Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,225
result(s) for
"Multiple Myeloma - genetics"
Sort by:
Immunophenotypic changes in the tumor and tumor microenvironment during progression to multiple myeloma
by
Ellis, Jenna-Claire
,
Caers, Jo
,
Köse, Murat Cem
in
Aged
,
Cancer Research
,
CD8-Positive T-Lymphocytes
2025
Investigation of the cellular and molecular mechanisms of disease progression from precursor plasma cell disorders to active disease increases our understanding of multiple myeloma (MM) pathogenesis and supports the development of novel therapeutic strategies. In this analysis, single-cell RNA sequencing, surface protein profiling, and B lymphocyte antigen receptor profiling of unsorted, whole bone marrow (BM) mononuclear cell samples was used to study molecular changes in tumor cells and the tumor microenvironment (TME). A cell atlas of the BM microenvironment was generated from 123 subjects including healthy volunteers and patients with monoclonal gammopathy of unknown significance (MGUS), smoldering MM (SMM), and MM. These analyses revealed commonalities in molecular pathways, including MYC signaling, E2F targets and interferon alpha response, that were altered during disease progression. Evidence of early dysregulation of the immune system in MGUS and SMM, which increases and impacts many cell types as the disease progresses, was found. In parallel with disease progression, population shifts in CD8 + T cells, macrophages, and classical dendritic cells were observed, and the resulting differences in CD8 + T cells and macrophages were associated with poor overall survival outcomes. Potential ligand-receptor interactions that may play a role during the transition from precursor stages to MM were identified, along with potential biomarkers of disease progression, some of which may represent novel therapeutic targets. MIF, IL15, CD320, HGF and FAM3C were detected as potential regulators of the TME by plasma cells, while SERPINA1 and BAFF (TNFSF13B) were found to have the highest potential to contribute to the downstream changes observed between precursor stage and MM cells. These findings demonstrate that myeloma tumorigenesis is associated with dysregulation of molecular pathways driven by gradually occurring immunophenotypic changes in the tumor and TME. Trial registration: This project has been registered at EudraCT (European Union Drug Regulating Authorities Clinical Trials Database) with protocol number NOPRODMMY0001 and EudraCT Number 2018-004443-23 on 12 December 2018.
Journal Article
Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
2023
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.
Journal Article
Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX
by
Usmani, Saad Z
,
San-Miguel, Jesus
,
Trivedi Sonali
in
Immunotherapy
,
Monoclonal antibodies
,
Multiple myeloma
2020
High cytogenetic risk abnormalities confer poor outcomes in multiple myeloma patients. In POLLUX, daratumumab/lenalidomide/dexamethasone (D-Rd) demonstrated significant clinical benefit versus lenalidomide/dexamethasone (Rd) in relapsed/refractory multiple myeloma (RRMM) patients. We report an updated subgroup analysis of POLLUX based on cytogenetic risk. The cytogenetic risk was determined using fluorescence in situ hybridization/karyotyping; patients with high cytogenetic risk had t(4;14), t(14;16), or del17p abnormalities. Minimal residual disease (MRD; 10–5) was assessed via the clonoSEQ® assay V2.0. 569 patients were randomized (D-Rd, n = 286; Rd, n = 283); 35 (12%) patients per group had high cytogenetic risk. After a median follow-up of 44.3 months, D-Rd prolonged progression-free survival (PFS) versus Rd in standard cytogenetic risk (median: not estimable vs 18.6 months; hazard ratio [HR], 0.43; P < 0.0001) and high cytogenetic risk (median: 26.8 vs 8.3 months; HR, 0.34; P = 0.0035) patients. Responses with D-Rd were deep, including higher MRD negativity and sustained MRD-negativity rates versus Rd, regardless of cytogenetic risk. PFS on subsequent line of therapy was improved with D-Rd versus Rd in both cytogenetic risk subgroups. The safety profile of D-Rd by cytogenetic risk was consistent with the overall population. These findings demonstrate the improved efficacy of daratumumab plus standard of care versus standard of care in RRMM, regardless of cytogenetic risk.
Journal Article
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma
2018
Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients.
Single cell dissection of plasma cell heterogeneity in myeloma patients reveals new insights into disease that may inform early diagnosis and clinical management.
Journal Article
Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma
by
Federspiel, M J
,
Russell, S J
,
Gertz, M A
in
631/1647/1511
,
631/326/596/1631
,
631/67/1059/2325
2017
MV-NIS is an Edmonston lineage oncolytic measles virus expressing the human sodium iodide symporter—a means for monitoring by non-invasive imaging of radioiodine. Patients with relapsed, refractory myeloma who had explored all other treatment options were eligible for this Phase I trial. Cohort 1 was treated with intravenous MV-NIS, and Cohort 2 received cyclophosphamide 2 days prior to MV-NIS. Thirty-two patients were treated. Cohort 1 initially enrolled to four dose levels without reaching maximum tolerated dose (MTD) and subsequently to two higher dose levels when improved virus manufacture technology made it possible. MTD was not reached in Cohort 1, and TCID
50
10
11
is the dose being used in a Phase II trial of single agent MV-NIS. Grade 3–4 adverse events in both cohorts at all dose levels were: neutropenia (
n
=9); leukocyte count decreased (
n
=5); thrombocytopenia (
n
=2); and CD4 lymphocytes decreased, anemia and lymphopenia (each
n
=1). MV-N RNA sequences were amplified from gargle specimens, blood and urine.
123
I scans were positive in eight patients. One patient achieved a complete response; transient drops in serum free light chains were seen in other patients. MV-NIS is capable of replicating before being cleared by the immune system. Oncolytic viruses offer a promising new modality for the targeted infection and destruction of disseminated myeloma.
Journal Article
Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities
2021
Multiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (
n
= 15) are characterized by later initiation in the patient’s life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity. This data provides evidence that WGS can be used to recognize two biologically and clinically distinct myeloma precursor entities that are either progressive or stable.
The factors that are associated with myeloma precursor condition progression are not well understood. Here the authors find that monoclonal gammopathies of undetermined significance and smoldering myelomas that did not progress to multiple myelomas have a distinct genomic profile and emerge later in the patient’s life.
Journal Article
Genomic patterns of progression in smoldering multiple myeloma
2018
We analyzed whole genomes of unique paired samples from smoldering multiple myeloma (SMM) patients progressing to multiple myeloma (MM). We report that the genomic landscape, including mutational profile and structural rearrangements at the smoldering stage is very similar to MM. Paired sample analysis shows two different patterns of progression: a “static progression model”, where the subclonal architecture is retained as the disease progressed to MM suggesting that progression solely reflects the time needed to accumulate a sufficient disease burden; and a “spontaneous evolution model”, where a change in the subclonal composition is observed. We also observe that activation-induced cytidine deaminase plays a major role in shaping the mutational landscape of early subclinical phases, while progression is driven by APOBEC cytidine deaminases. These results provide a unique insight into myelomagenesis with potential implications for the definition of smoldering disease and timing of treatment initiation.
Smoldering MM (SMM) is a premalignant stage of multiple myeloma (MM). Here the authors perform whole genome sequencing of unique paired samples of SMM progressing to MM, and show that the genomic landscape at the SMM stage is very similar to MM, but trajectories of evolution can vary from patient to patient.
Journal Article
Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial
2021
Structural chromosomal changes including copy number aberrations (CNAs) are a major feature of multiple myeloma (MM), however their evolution in context of modern biological therapy is not well characterized. To investigate acquisition of CNAs and their prognostic relevance in context of first-line therapy, we profiled tumor diagnosis–relapse pairs from 178 NCRI Myeloma XI (ISRCTN49407852) trial patients using digital multiplex ligation-dependent probe amplification. CNA profiles acquired at relapse differed substantially between MM subtypes: hyperdiploid (HRD) tumors evolved predominantly in branching pattern vs. linear pattern in t(4;14) vs. stable pattern in t(11;14). CNA acquisition also differed between subtypes based on
CCND
expression, with a marked enrichment of acquired del(17p) in
CCND2
over
CCND1
tumors. Acquired CNAs were not influenced by high-dose melphalan or lenalidomide maintenance randomization. A branching evolution pattern was significantly associated with inferior overall survival (OS; hazard ratio (HR) 2.61,
P
= 0.0048). As an individual lesion, acquisition of gain(1q) at relapse was associated with shorter OS, independent of other risk markers or time of relapse (HR = 2.00;
P
= 0.021). There is an increasing need for rational therapy sequencing in MM. Our data supports the value of repeat molecular profiling to characterize disease evolution and inform management of MM relapse.
Journal Article
Carfilzomib induction, consolidation, and maintenance with or without autologous stem-cell transplantation in patients with newly diagnosed multiple myeloma: pre-planned cytogenetic subgroup analysis of the randomised, phase 2 FORTE trial
by
Rota-Scalabrini, Delia
,
Musto, Pellegrino
,
Vincelli, Iolanda Donatella
in
Angina pectoris
,
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
,
Autografts
2023
Patients with newly diagnosed multiple myeloma and high-risk cytogenetic abnormalities (HRCA) represent an unmet medical need. In the FORTE trial, lenalidomide and dexamethasone plus carfilzomib (KRd) induction resulted in a higher proportion of patients with at least a very good partial response as compared with carfilzomib, cyclophosphamide, and dexamethasone (KCd), and carfilzomib plus lenalidomide maintenance prolonged progression-free survival compared with lenalidomide maintenance. In this prespecified analysis of the FORTE trial, we described the outcomes of enrolled patients according to their cytogenetic risk.
The UNITO-MM-01/FORTE was a randomised, open-label, phase 2 trial done at 42 Italian academic and community practice centres, which enrolled transplant-eligible patients with newly diagnosed multiple myeloma aged 18–65 years. Eligible patients had newly diagnosed multiple myeloma based on standard International Myeloma Working Group criteria, a Karnofsky performance status of at least 60%, and had not received any previous treatment with anti-myeloma therapy. At enrolment, patients were stratified according to International Staging System stage (I vs II/III) and age (<60 years vs 60–65 years) and randomly assigned (1:1:1) to KRd plus autologous stem-cell transplantation (ASCT; four 28-day induction cycles with KRd, melphalan at 200 mg/m2 and ASCT [MEL200-ASCT], followed by four 28-day KRd consolidation cycles), 12 28-day KRd cycles, or KCd plus ASCT (four 28-day induction cycles with KCd, MEL200-ASCT, and four 28-day KCd consolidation cycles), using a web-based system (block randomisation, block size of 12). Carfilzomib was administered at 20 mg/m2 on days 1 and 2 of cycle 1, followed by 36 mg/m2 intravenously administered on days 8, 9, 15, and 16 of cycle 1, and then 36 mg/m2 intravenously administered for all subsequent doses on days 1, 2, 8, 9, 15, 16; lenalidomide 25 mg was administered orally on days 1–21; cyclophosphamide 300 mg/m2 was administered orally on days 1, 8, and 15; and dexamethasone 20 mg was administered orally or intravenously on days 1, 2, 8, 9, 15, 16, 22, and 23. After the consolidation phase, patients were stratified according to induction–consolidation treatment and randomly assigned (1:1; block size of 8) to maintenance treatment with carfilzomib plus lenalidomide or lenalidomide alone. Carfilzomib 36 mg/m2 was administered intravenously on days 1–2 and days 15–16, every 28 days for up to 2 years, and lenalidomide 10 mg was administered orally on days 1–21 every 28 days until progression or intolerance in both groups. The primary endpoints were the proportion of patients with at least a very good partial response after induction with KRd versus KCd and progression-free survival with carfilzomib plus lenalidomide versus lenalidomide alone as maintenance treatment. In this preplanned analysis, we included patients enrolled in the FORTE trial with complete cytogenetic data on del(17p), t(4;14), t(14;16), del(1p), gain(1q) (3 copies), and amp(1q) (≥4 copies) assessed by fluorescence in-situ hybridisation analysis on CD138-positive sorted cells. We assessed progression-free survival, overall survival, minimal residual disease negativity, and 1-year sustained minimal residual disease negativity according to the presence of zero, one, and two or more HRCA across treatment groups. The FORTE trial is ongoing, and registered with ClinicalTrials.gov, NCT02203643.
Between Feb 23, 2015, and April 5, 2017, 477 patients were enrolled, of whom 396 (83%) had complete cytogenetic data and were analysed (176 [44%] of whom were women and 220 [56%] were men). The median follow-up from first randomisation was 51 months (IQR 46–56). 4-year progression-free survival was 71% (95% CI 64–78) in patients with zero HRCA, 60% (95% CI 52–69) in patients with one HRCA, and 39% (95% CI 30–50) in patients with two or more HRCA. Compared with patients with zero HRCA, the risk of progression or death was similar in patients with one HRCA (hazard ratio [HR] 1·33 [95% CI 0·90–1·97]; p=0·15) and higher in patients with two or more HRCA (HR 2·56 [95% CI 1·74–3·75]); p<0·0001) across the induction–intensification–consolidation groups. Moreover, the risk of progression or death was also higher in patients with two or more HRCA versus those with one HRCA (HR 1·92 [95% CI 1·34–2·76]; p=0·0004). 4-year overall survival from the first randomisation was 94% (95% CI 91–98) in patients with zero HRCA, 83% (95% CI 76–90) in patients with one HRCA, and 63% (95% CI 54–74) in patients with two or more HRCA. Compared with patients with zero HRCA, the risk of death was significantly higher in patients with one HRCA (HR 2·55 [95% CI 1·22–5·36]; p=0·013) and two or more HRCA (HR 6·53 [95% CI 3·24–13·18]; p<0·0001). Patients with two or more HRCA also had a significantly higher risk of death than those with one HRCA (HR 2·56 [95% CI 1·53–4·28]; p=0·0004). The rates of 1-year sustained minimal residual disease negativity were similar in patients with zero HRCA (53 [35%] of 153] and with one HRCA (57 [41%] of 138) and were lower in patients with two or more HRCA (25 [24%] of 105). The median duration of follow-up from second randomisation was 37 months (IQR 33–42). 3-year progression-free survival from the second randomisation was 80% (95% CI 74–88) in patients with zero HRCA, 68% (95% CI 59–78) in patients with one HRCA, and 53% (95% CI 42–67) in patients with two or more HRCA. The risk of progression or death was higher in patients with one HRCA (HR 1·68 [95% CI 1·01–2·80]; p=0·048) and two or more HRCA (2·74 [95% CI 1·60–4·69], p=0·0003) than in patients with zero HRCA.
This preplanned analysis of the FORTE trial showed that carfilzomib-based induction–intensification–consolidation regimens are effective strategies in patients with standard risk (zero HRCA) and high-risk (one HRCA) myeloma, resulting in similar rates of progression-free survival and 1-year sustained minimal residual disease negativity. Despite promising progression-free survival, patients with ultra-high-risk disease (those with 2 or more HRCA) still have an increased risk of progression and death and therefore represent an unmet medical need.
Amgen and Celgene/Bristol Myers Squibb.
Journal Article