Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Multiple features combination"
Sort by:
CNN-DDI: a learning-based method for predicting drug–drug interactions using convolution neural networks
Background Drug–drug interactions (DDIs) are the reactions between drugs. They are compartmentalized into three types: synergistic, antagonistic and no reaction. As a rapidly developing technology, predicting DDIs-associated events is getting more and more attention and application in drug development and disease diagnosis fields. In this work, we study not only whether the two drugs interact, but also specific interaction types. And we propose a learning-based method using convolution neural networks to learn feature representations and predict DDIs. Results In this paper, we proposed a novel algorithm using a CNN architecture, named CNN-DDI, to predict drug–drug interactions. First, we extract feature interactions from drug categories, targets, pathways and enzymes as feature vectors and employ the Jaccard similarity as the measurement of drugs similarity. Then, based on the representation of features, we build a new convolution neural network as the DDIs’ predictor. Conclusion The experimental results indicate that drug categories is effective as a new feature type applied to CNN-DDI method. And using multiple features is more informative and more effective than single feature. It can be concluded that CNN-DDI has more superiority than other existing algorithms on task of predicting DDIs.
Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV
Timely and accurately monitoring leaf nitrogen content (LNC) is essential for evaluating crop nutrition status. Currently, Unmanned Aerial Vehicles (UAV) imagery is becoming a potentially powerful tool of assessing crop nitrogen status in fields, but most of crop nitrogen estimates based on UAV remote sensing usually use single type imagery, the fusion information from different types of imagery has rarely been considered. In this study, the fusion images were firstly made from the simultaneously acquired digital RGB and multi-spectral images from UAV at three growth stages of rice, and then couple the selecting methods of optimal features with machine learning algorithms for the fusion images to estimate LNC in rice. Results showed that the combination with different types of features could improve the models’ accuracy effectively, the combined inputs with bands, vegetation indices (VIs) and Grey Level Co-occurrence Matrices (GLCMs) have the better performance. The LNC estimation of using fusion images was improved more obviously than multispectral those, and there was the best estimation at jointing stage based on Lasso Regression (LR), with R2 of 0.66 and RMSE of 11.96%. Gaussian Process Regression (GPR) algorithm used in combination with one feature-screening method of Minimum Redundancy Maximum Correlation (mRMR) for the fusion images, showed the better improvement to LNC estimation, with R2 of 0.68 and RMSE of 11.45%. It indicates that the information fusion from UAV multi-sensor imagery can significantly improve crop LNC estimates and the combination with multiple types of features also has a great potential for evaluating LNC in crops.
A Deep-Learning-Based Method for Spectrum Sensing with Multiple Feature Combination
Cognitive radio networks enable the detection and opportunistic access to an idle spectrum through spectrum-sensing technologies, thus providing services to secondary users. However, at a low signal-to-noise ratio (SNR), existing spectrum-sensing methods, such as energy statistics and cyclostationary detection, tend to fail or become overly complex, limiting their sensing accuracy in complex application scenarios. In recent years, the integration of deep learning with wireless communications has shown significant potential. Utilizing neural networks to learn the statistical characteristics of signals can effectively adapt to the changing communication environment. To enhance spectrum-sensing performance under low-SNR conditions, this paper proposes a deep-learning-based spectrum-sensing method that combines multiple signal features, including energy statistics, power spectrum, cyclostationarity, and I/Q components. The proposed method used these combined features to form a specific matrix, which was then efficiently learned and detected through the designed ‘SenseNet’ network. Experimental results showed that at an SNR of −20 dB, the SenseNet model achieved a 58.8% spectrum-sensing accuracy, which is a 3.3% improvement over the existing convolutional neural network model.
Constructing and Combining Orthogonal Projection Vectors for Ordinal Regression
Ordinal regression is to predict categories of ordinal scale and it has wide applications in many domains where the human evaluation plays a major role. So far several algorithms have been proposed to tackle ordinal regression problems from a machine learning perspective. However, most of these algorithms only seek one direction where the projected samples are well ranked. So a common shortcoming of these algorithms is that only one dimension in the sample space is used, which would definitely lose some useful information in its orthogonal subspaces. In this paper, we propose a novel ordinal regression strategy which consists of two stages: firstly orthogonal feature vectors are extracted and then these projector vectors are combined to learn an ordinal regression rule. Compared with previous ordinal regression methods, the proposed strategy can extract multiple features from the original data space. So the performance of ordinal regression could be improved because more information of the data is used. The experimental results on both benchmark and real datasets proves the performance of the proposed method.
On using nearly-independent feature families for high precision and confidence
Consider learning tasks where the precision requirement is very high, for example a 99 % precision requirement for a video classification application. We report that when very different sources of evidence such as text, audio, and video features are available, combining the outputs of base classifiers trained on each feature type separately, aka late fusion, can substantially increase the recall of the combination at high precisions, compared to the performance of a single classifier trained on all the feature types, i.e., early fusion, or compared to the individual base classifiers. We show how the probability of a joint false-positive mistake can be less—in some cases significantly less—than the product of individual probabilities of conditional false-positive mistakes (a NoisyOR combination). Our analysis highlights a simple key criterion for this boosted precision phenomenon and justifies referring to such feature families as (nearly) independent. We assess the relevant factors for achieving high precision empirically, and explore combination techniques informed by the analysis.
Failure Feature Identification of Vibrating Screen Bolts under Multiple Feature Fusion and Optimization Method
Strong impacts and vibrations exist in various structures of rice combine harvesters in harvesting, so the bolt connection structure on the harvesters is prone to loosening and failure, which would further affect the service life and working efficiency of the working device and structure. In this paper, based on the vibration signal acquisition experiment on the bolt and connection structure of the vibrating screen on the harvester, failure feature identification is studied. According to the sensitivity analysis results and the primary extraction of the time-frequency feature, most features have limitations on the identification of failure features of vibrating screen bolts. Therefore, based on the establishment of a high-dimensional feature matrix and multivariate fusion feature matrix, the validity of the feature set was verified based on the whale optimization algorithm. And then, based on the SVM method and high-dimensional mapping of the kernel functions, the high-dimensional feature matrix is trained by the LIBSVM classification decision model. The identify success rates of time domain feature matrix A, frequency domain feature matrix B, WOA-VMD energy entropy matrix C, and normalized multivariate fusion feature matrix G are 64.44%, 74.44%, 81.11%, and more than 90%, respectively, which can reflect the applicability of the failure state identification of the normalized multivariate fusion feature matrix. This paper provided a theoretical basis for the identification of a harvester bolt failure feature.
Improving Wheat Leaf Nitrogen Concentration (LNC) Estimation across Multiple Growth Stages Using Feature Combination Indices (FCIs) from UAV Multispectral Imagery
Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely related to the growth and development dynamics of crops. Accurate and efficient monitoring of LNC is significant for precision field crop management and enhancing crop productivity. However, the biochemical properties and canopy structure of wheat change across different growth stages, leading to variations in spectral responses that significantly impact the estimation of wheat LNC. This study aims to investigate the construction of feature combination indices (FCIs) sensitive to LNC across multiple wheat growth stages, using remote sensing data to develop an LNC estimation model that is suitable for multiple growth stages. The research employs UAV multispectral remote sensing technology to acquire canopy imagery of wheat during the early (Jointing stage and Booting stage) and late (Early filling and Late filling stages) in 2021 and 2022, extracting spectral band reflectance and texture metrics. Initially, twelve sensitive spectral feature combination indices (SFCIs) were constructed using spectral band information. Subsequently, sensitive texture feature combination indices (TFCIs) were created using texture metrics as an alternative to spectral bands. Machine learning algorithms, including partial least squares regression (PLSR), random forest regression (RFR), support vector regression (SVR), and Gaussian process regression (GPR), were used to integrate spectral and texture information, enhancing the estimation performance of wheat LNC across growth stages. Results show that the combination of Red, Red edge, and Near-infrared bands, along with texture metrics such as Mean, Correlation, Contrast, and Dissimilarity, has significant potential for LNC estimation. The constructed SFCIs and TFCIs both enhanced the responsiveness to LNC across multiple growth stages. Additionally, a sensitive index, the Modified Vegetation Index (MVI), demonstrated significant improvement over NDVI, correcting the over-saturation concerns of NDVI in time-series analysis and displaying outstanding potential for LNC estimation. Spectral information outperforms texture information in estimation capability, and their integration, particularly with SVR, achieves the highest precision (coefficient of determination (R2) = 0.786, root mean square error (RMSE) = 0.589%, and relative prediction deviation (RPD) = 2.162). In conclusion, the sensitive FCIs developed in this study improve LNC estimation performance across multiple growth stages, enabling precise monitoring of wheat LNC. This research provides insights and technical support for the construction of sensitive indices and the precise management of nitrogen nutrition status in field crops.
Back on TRAC: New trial launched in bid to outpace multidrug-resistant malaria
On January 7 2016,, a study confirmed what a few scientists had long suspected: the prevalence of multidrug-resistant malaria has grown. Researchers found that nearly 40% of people with malaria in Pursat, a province at the foothills of the Cardamom Mountains in western Cambodia, could not be cured by a gold-standard treatment known as artemisinin-based combination therapy (ACT)1. The therapy consists of a course of pills that are taken over three consecutive days, and it cures malaria within a week. The pills include artemisinin, a sweet wormwood extract whose discoverer won a Nobel Prize last year, in combination with one of several longer-lasting partner drugs.
Should patient groups be more transparent about their funding?
Patient groups often shout loudly for access to drugs but are quieter about their links to industry. Sophie Arie and Chris Mahony ask whether this is acceptable given increasing demands for transparency elsewhere in medicine
Learning adaptive contrast combinations for visual saliency detection
Visual saliency detection plays a significant role in the fields of computer vision. In this paper, we introduce a novel saliency detection method based on weighted linear multiple kernel learning (WLMKL) framework, which is able to adaptively combine different contrast measurements in a supervised manner. As most influential factor is contrast operation in bottom-up visual saliency, an average weighted corner-surround contrast (AWCSC) is first designed to measure local visual saliency. Combined with common-used center-surrounding contrast (CESC) and global contrast (GC), three types of contrast operations are fed into our WLMKL framework to produce the final saliency map. We show that the assigned weights for each contrast feature maps are always normalized in our WLMKL formulation. In addition, the proposed approach benefits from the advantages of the contribution of each individual contrast feature maps, yielding more robust and accurate saliency maps. We evaluated our method for two main visual saliency detection tasks: human fixed eye prediction and salient object detection. The extensive experimental results show the effectiveness of the proposed model, and demonstrate the integration is superior than individual subcomponent.