Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
140 result(s) for "Multivariate extreme value theory"
Sort by:
Linking representations for multivariate extremes via a limit set
The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.
BIAS CORRECTION IN MULTIVARIATE EXTREMES
The estimation of the extremal dependence structure is spoiled by the impact of the bias, which increases with the number of observations used for the estimation. Already known in the univariate setting, the bias correction procedure is studied in this paper under the multivariate framework. New families of estimators of the stable tail dependence function are obtained. They are asymptotically unbiased versions of the empirical estimator introduced by Huang [Statistics of bivariate extremes (1992) Erasmus Univ.]. Since the new estimators have a regular behavior with respect to the number of observations, it is possible to deduce aggregated versions so that the choice of the threshold is substantially simplified. An extensive simulation study is provided as well as an application on real data.
The t Copula and Related Copulas
The t copula and its properties are described with a focus on issues related to the dependence of extreme values. The Gaussian mixture representation of a multivariate t distribution is used as a starting point to construct two new copulas, the skewed t copula and the grouped t copula, which allow more heterogeneity in the modelling of dependent observations. Extreme value considerations are used to derive two further new copulas: the t extreme value copula is the limiting copula of componentwise maxima of t distributed random vectors; the t lower tail copula is the limiting copula of bivariate observations from a t distribution that are conditioned to lie below some joint threshold that is progressively lowered. Both these copulas may be approximated for practical purposes by simpler, better-known copulas, these being the Gumbel and Clayton copulas respectively. /// Dans cet article on décrit les propriétés de la copule t, avec particulière attention envers la dépendance des valeurs extrêmes. Exploitant la représentation de la loi multivariée t par un mélange de Gaussiennes, on construit deux nouveaux types de copule: une version biaisée (skewed t copula) et une version permettant une majeure hétérogénéité dans la modélisation des observations dépendantes (grouped t copula). Deux autres types de copule sont ensuite construits à l'aide de la théorie des valeurs extrêmes. L'une est la copule limite de la loi des maxima de chaque composante d'un vecteur aléatoire avec distribution t (t extreme value copula), l'autre est la copule limite des observations d'un vecteur bivarié obéissant à une loi t, conditionnées a être en dessous d'un certain seuil commun, qu'on baisse progressivement (t lower tail copula). En ce qui concerne les applications pratiques, ces deux dernières copules peuvent être approximées par d'autres copules plus simples et connues, comme celle de Gumbel et celle de Clayton.
A multivariate extreme value theory approach to anomaly clustering and visualization
In a wide variety of situations, anomalies in the behaviour of a complex system, whose health is monitored through the observation of a random vector X=(X1,…,Xd) valued in Rd, correspond to the simultaneous occurrence of extreme values for certain subgroups α⊂{1,…,d} of variables Xj. Under the heavy-tail assumption, which is precisely appropriate for modeling these phenomena, statistical methods relying on multivariate extreme value theory have been developed in the past few years for identifying such events/subgroups. This paper exploits this approach much further by means of a novel mixture model that permits to describe the distribution of extremal observations and where the anomaly type α is viewed as a latent variable. One may then take advantage of the model by assigning to any extreme point a posterior probability for each anomaly type α, defining implicitly a similarity measure between anomalies. It is explained at length how the latter permits to cluster extreme observations and obtain an informative planar representation of anomalies using standard graph-mining tools. The relevance and usefulness of the clustering and 2-d visual display thus designed is illustrated on simulated datasets and on real observations as well, in the aeronautics application domain.
A conditional approach for multivariate extreme values (with discussion)
Multivariate extreme value theory and methods concern the characterization, estimation and extrapolation of the joint tail of the distribution of a d-dimensional random variable. Existing approaches are based on limiting arguments in which all components of the variable become large at the same rate. This limit approach is inappropriate when the extreme values of all the variables are unlikely to occur together or when interest is in regions of the support of the joint distribution where only a subset of components is extreme. In practice this restricts existing methods to applications where d is typically 2 or 3. Under an assumption about the asymptotic form of the joint distribution of a d-dimensional random variable conditional on its having an extreme component, we develop an entirely new semiparametric approach which overcomes these existing restrictions and can be applied to problems of any dimension. We demonstrate the performance of our approach and its advantages over existing methods by using theoretical examples and simulation studies. The approach is used to analyse air pollution data and reveals complex extremal dependence behaviour that is consistent with scientific understanding of the process. We find that the dependence structure exhibits marked seasonality, with extremal dependence between some pollutants being significantly greater than the dependence at non-extreme levels.
Extreme Wind Loading on Flat-Roof-Mounted Solar Arrays with Consideration of Wind Directionality
The assessment of extreme wind loading on solar arrays plays a significant role in ensuring their safe operation under strong winds. Therefore, this paper investigates the extreme wind loading on solar arrays mounted on a flat roof by taking into account the wind directionality effect. The estimation process is conducted by using in situ wind speeds obtained from meteorological stations and wind loading coefficients on solar arrays obtained from wind tunnel tests based on the joint probability distribution of multiple variables and their conditional probabilities. This allows a discussion regarding how the extreme wind loading of solar arrays would be affected by such factors as the uncertainty of wind loading coefficient, the structural orientation of buildings on which solar arrays are mounted, and the directional characteristics of wind speeds. Finally, a comparison among the proposed methods, considering the wind directionality in current wind loading codes, is performed. The extreme wind loading determined by multivariate extreme value theory is found to be comparable to the corresponding estimate calculated according to the independent assumption of directional extreme wind speed. The results of this study provide a valuable reference for the design of wind-resistant solar arrays that takes account of wind directionality effect.
On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions
Full likelihood-based inference for high-dimensional multivariate extreme value distributions, or maxstable processes, is feasible when incorporating occurrence times of the maxima; without this information, d-dimensional likelihood inference is usually precluded due to the large number of terms in the likelihood. However, some studies have noted bias when performing high-dimensional inference that incorporates such event information, particularly when dependence is weak. We elucidate this phenomenon, showing that for unbiased inference in moderate dimensions, dimension d should be of a magnitude smaller than the square root of the number of vectors over which one takes the componentwise maximum. A bias reduction technique is suggested and illustrated on the extreme-value logistic model.
Max-Linear Competing Factor Models
Models incorporating \"latent\" variables have been commonplace in financial, social, and behavioral sciences. Factor model, the most popular latent model, explains the continuous observed variables in a smaller set of latent variables (factors) in a matter of linear relationship. However, complex data often simultaneously display asymmetric dependence, asymptotic dependence, and positive (negative) dependence between random variables, which linearity and Gaussian distributions and many other extant distributions are not capable of modeling. This article proposes a nonlinear factor model that can model the above-mentioned variable dependence features but still possesses a simple form of factor structure. The random variables, marginally distributed as unit Fréchet distributions, are decomposed into max linear functions of underlying Fréchet idiosyncratic risks, transformed from Gaussian copula, and independent shared external Fréchet risks. By allowing the random variables to share underlying (latent) pervasive risks with random impact parameters, various dependence structures are created. This innovates a new promising technique to generate families of distributions with simple interpretations. We dive in the multivariate extreme value properties of the proposed model and investigate maximum composite likelihood methods for the impact parameters of the latent risks. The estimates are shown to be consistent. The estimation schemes are illustrated on several sets of simulated data, where comparisons of performance are addressed. We employ a bootstrap method to obtain standard errors in real data analysis. Real application to financial data reveals inherent dependencies that previous work has not disclosed and demonstrates the model's interpretability to real data. Supplementary materials for this article are available online.
New characterizations of multivariate Max-domain of attraction and D-Norms
In this paper we derive new results on multivariate extremes and D-norms. In particular we establish new characterizations of the multivariate max-domain of attraction property. The limit distribution of certain multivariate exceedances above high thresholds is derived, and the distribution of that generator of a D-norm on ℝd, whose components sum up to d, is obtained. Finally we introduce exchangeable D-norms and show that the set of exchangeable D-norms is a simplex.
A new representation for multivariate tail probabilities
Existing theory for multivariate extreme values focuses upon characterizations of the distributional tails when all components of a random vector, standardized to identical margins, grow at the same rate. In this paper, we consider the effect of allowing the components to grow at different rates, and characterize the link between these marginal growth rates and the multivariate tail probability decay rate. Our approach leads to a whole class of univariate regular variation conditions, in place of the single but multivariate regular variation conditions that underpin the current theories. These conditions are indexed by a homogeneous function and an angular dependence function, which, for asymptotically independent random vectors, mirror the role played by the exponent measure and Pickands' dependence function in classical multivariate extremes. We additionally offer an inferential approach to joint survivor probability estimation. The key feature of our methodology is that extreme set probabilities can be estimated by extrapolating upon rays emanating from the origin when the margins of the variables are exponential. This offers an appreciable improvement over existing techniques where extrapolation in exponential margins is upon lines parallel to the diagonal.