Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,924 result(s) for "Muons"
Sort by:
Peer Review Statement
All papers published in this volume have been reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.• Type of peer review: Single Anonymous• Conference submission management system: Morressier• Number of submissions received: 63• Number of submissions sent for review: 62• Number of submissions accepted: 61• Acceptance Rate (Submissions Accepted / Submissions Received × 100): 96.8• Average number of reviews per paper: 1.02• Total number of reviewers involved: 32• Contact person for queries:Name: Francis PrattEmail: francis.pratt@stfc.ac.ukAffiliation: Science and Technology Facilities Council - ISIS Muons
Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 10 11 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to ( 3.27 ± 0.07 ) × 10 11 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
Demonstration of cooling by the Muon Ionization Cooling Experiment
The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such ‘tertiary’ beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton–antilepton collisions at extremely high energies and provide well characterized neutrino beams 1 – 6 . Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness 7 , 8 . Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect 9 – 11 . The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced footprint 6 . Ionization cooling, a technique that delivers high-brightness muon beams for the study of phenomena at energy scales beyond those of the Large Hadron Collider, is demonstrated by the Muon Ionization Cooling Experiment.
How can Neutron Imaging contribute to Heritage Science? An overview at the ISIS Neutron and Muon Source
Heritage Science HS spans a large variety of objects and materials, as well as anything that has historic, artistic, anthropological, and natural significance. This paper aims to bridge the gap between the physical and natural sciences and the humanities, and divulge neutron imaging techniques to a wider community. Here we give an introduction of the neutron imaging capabilities at the ISIS Neutron and Muon Source (UK), and a brief overview of some research activities in HS carried out at the facility in recent years, from neutron tomography to elemental imaging.
Correlated charge noise and relaxation errors in superconducting qubits
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state about the X and Z  directions. Although the Heisenberg uncertainty principle precludes simultaneous monitoring of X - and Z -flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided that the error rate is low 1 . Another crucial requirement is that errors cannot be correlated. Here we characterize a superconducting multiqubit circuit and find that charge noise in the chip is highly correlated on a length scale over 600 micrometres; moreover, discrete charge jumps are accompanied by a strong transient reduction of qubit energy relaxation time across the millimetre-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle generation associated with absorption of γ-rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts. Cosmic-ray particles and γ-rays striking superconducting circuits can generate qubit errors that are spatially correlated across several millimetres, hampering current error-correction approaches.
Momentum-Dependent Cosmic Ray Muon Computed Tomography Using a Fieldable Muon Spectrometer
Cosmic ray muon tomography has been recently explored as a non-destructive technique for monitoring or imaging dense well-shielded objects, classically not achievable with traditional tomographic methods. As a recent example of technology transition from high-energy physics to real-world engineering applications, cosmic ray muon tomography has been used with various levels of success in nuclear nonproliferation. However, present muon detection systems have no momentum measurement capabilities and recently developed muon-based radiographic techniques rely only on muon tracking. This unavoidably reduces resolution and requires longer measurement times thus limiting the widespread use of cosmic ray muon tomography. Measurement of cosmic ray muon momenta has the potential to significantly improve the efficiency and resolution of cosmic ray muon tomography. In this paper, we propose and explore the use of momentum-dependent cosmic ray muon tomography using multi-layer gas Cherenkov radiators, a new concept for measuring muon momentum in the field. The muon momentum measurements are coupled with a momentum-dependent imaging algorithm (mPoCA) and image reconstructions are presented to demonstrate the benefits of measuring momentum in cosmic ray muon tomography.
The Anomalous Magnetic Moment of Muon
Known as one of the most hopeful fields to find new physics beyond the standard model, the anomalous magnetic moment of muon has gained much attention for a long time and become even more important after the Fermi National Accelerator Laboratory’s result came out in 2018. This paper shows the general works and achievements in this exciting field. Those include experiments operated by the Brookhaven National Laboratory and Fermi National Accelerator Laboratory to measure the g-2 factor, the calculation based on the standard model, and a possible extension of the standard model that can explain the experimental results. This paper is an introduction for anyone interested in this field.
RPCs for the SND Muon System of the SHiP experiment
SHiP (Search for Hidden Particles) is a proposed beam dump experiment at CERN SPS, with the aim of exploring the so-called Hidden Sector. Since a large neutrino flux is expected to be produced at the beam dump, the experiment could also allow for the study of neutrino physics with unprecedented statistics. A dedicated Scattering and Neutrino Detector (SND), equipped with a downstream Muon Identification System, is thus being designed. The SND muon detector consists of iron filters interleaved with tracking planes, based on RPC technology. Each muon plane has an active area of about (2 x 4) m 2 and consists of three large gaps read out by two panels of perpendicular strips. The SHiP RPCs have to provide a uniform spatial response as well as high efficiency. The design of the SND muon system is presented and the performance of a SHiP RPC prototype is discussed.
Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
Accurate knowledge of the charge and Zemach radii of the proton is essential, not only for understanding its structure but also as input for tests of bound-state quantum electrodynamics and its predictions for the energy levels of hydrogen. These radii may be extracted from the laser spectroscopy of muonic hydrogen (μp, that is, a proton orbited by a muon). We measured the $2{\\mathrm{S}}_{1/2}^{\\mathrm{F}=0}-2{\\mathrm{P}}_{3/2}^{\\mathrm{F}=1}$ transition frequency in μp to be 54611.16(1.05) gigahertz (numbers in parentheses indicate one standard deviation of uncertainty) and reevaluated the $2{\\mathrm{S}}_{1/2}^{\\mathrm{F}=1}-2{\\mathrm{P}}_{3/2}^{\\mathrm{F}=1}$ transition frequency, yielding 49881.35(65) gigahertz. From the measurements, we determined the Zemach radius, r Z = 1.082(37) femtometers, and the magnetic radius, r M = 0.87(6) femtometer, of the proton. We also extracted the charge radius, r E = 0.84087(39) femtometer, with an order of magnitude more precision than the 2010-CODATA value and at 7σ variance with respect to it, thus reinforcing the proton radius puzzle.
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector
Neutrinos are thought to be produced in astrophysical sources outside our solar system but, up until recently, they had only been observed from one supernova in 1987. Aartsen et al. ( 10.1126/science.1242856 ; see the cover) report data obtained between 2010 and 2012 with the IceCube neutrino detector that reveal the presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed, including 28 events at energies between 30 and 1200 TeV. Although the origin of this flux is unknown, the findings are consistent with expectations for a neutrino population with origins outside the solar system. The IceCube observatory at the South Pole detected neutrinos from outside our solar system. We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4σ level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.