Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,106 result(s) for "Muscle, Smooth, Vascular - pathology"
Sort by:
Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy
Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Fabry disease, a lysosomal storage disease caused by deficient lysosomal α-galactosidase A activity, is characterized by globotriaosylceramide (GL-3) accumulation in multiple cell types, particularly the vasculature, leading to end organ failure. Accumulation in the kidney is responsible for progressive decline in renal function in male patients with the classical phenotype, resulting in renal failure in their third to fifth decades of life. With the advent of recombinant protein synthesis technology, enzyme replacement therapy has become a viable alternative to dialysis or renal transplantation, previously the only available treatment options for end-stage renal disease. The pre- and post-treatment renal biopsies were analyzed from fifty-eight Fabry patients enrolled in a Phase 3 double-blind, randomized, placebo-controlled trial followed by a six-month open label extension study of the recombinant human enzyme, α-galactosidase A (r-hαGalA), administered IV at 1mg/kg biweekly. The purpose of this investigation was to detail the pathologic changes in glycosphingolipid distribution and the pattern of post-treatment clearance in the kidney. Baseline evaluations revealed GL-3 accumulations in nearly all renal cell types including vascular endothelial cells, vascular smooth muscle cells, mesangial cells and interstitial cells, with particularly dense accumulations in podocytes and distal tubular epithelial cells. After 11 months of r-hαGalA treatment there was complete clearance of glycolipid from the endothelium of all vasculature as well as from the mesangial cells of the glomerulus and interstitial cells of the cortex. Moderate clearance was noted from the smooth muscle cells of arterioles and small arteries. Podocytes and distal tubular epithelium also demonstrated evidence for decreased GL-3, although this clearance was more limited than that observed in other cell types. No evidence of immune complex disease was found by immunofluorescence despite circulating anti-r-hαGalA IgG antibodies. These findings indicate a striking reversal of renal glycosphingolipid accumulation in the vasculature and in other renal cell types, and suggest that long-term treatment with r-hαGalA may halt the progression of pathology and prevent renal failure in patients with Fabry disease.
Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation
The pathobiology of atherosclerotic disease requires further elucidation to discover new approaches to address its high morbidity and mortality. To date, over 17 million cardiovascular-related deaths have been reported annually, despite a multitude of surgical and nonsurgical interventions and advances in medical therapy. Existing strategies to prevent disease progression mainly focus on management of risk factors, such as hypercholesterolemia. Even with optimum current medical therapy, recurrent cardiovascular events are not uncommon in patients with atherosclerosis, and their incidence can reach 10–15% per year. Although treatments targeting inflammation are under investigation and continue to evolve, clinical breakthroughs are possible only if we deepen our understanding of vessel wall pathobiology. Vascular smooth muscle cells (VSMCs) are one of the most abundant cells in vessel walls and have emerged as key players in disease progression. New technologies, including in situ hybridization proximity ligation assays, in vivo cell fate tracing with the CreER T2 -loxP system and single-cell sequencing technology with spatial resolution, broaden our understanding of the complex biology of these intriguing cells. Our knowledge of contractile and synthetic VSMC phenotype switching has expanded to include macrophage-like and even osteoblast-like VSMC phenotypes. An increasing body of data suggests that VSMCs have remarkable plasticity and play a key role in cell-to-cell crosstalk with endothelial cells and immune cells during the complex process of inflammation. These are cells that sense, interact with and influence the behavior of other cellular components of the vessel wall. It is now more obvious that VSMC plasticity and the ability to perform nonprofessional phagocytic functions are key phenomena maintaining the inflammatory state and senescent condition and actively interacting with different immune competent cells.
Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.
Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is characterized by a progressive accumulation of pulmonary artery smooth muscle cells (PA-SMCs) in pulmonary arterioles leading to the narrowing of the lumen, right heart failure, and death. Although most studies have supported the notion of a role for IL-6/glycoprotein 130 (gp130) signaling in PAH, it remains unclear how this signaling pathway determines the progression of the disease. Here, we identify ectopic upregulation of membrane-bound IL-6 receptor (IL6R) on PA-SMCs in PAH patients and in rodent models of pulmonary hypertension (PH) and demonstrate its key role for PA-SMC accumulation in vitro and in vivo. Using Sm22a-Cre Il6rfl/fl, which lack Il6r in SM22A-expressing cells, we found that these animals are protected against chronic hypoxia-induced PH with reduced PA-SMC accumulation, revealing the potent pro-survival potential of membrane-bound IL6R. Moreover, we determine that treatment with IL6R-specific antagonist reverses experimental PH in two rat models. This therapeutic strategy holds promise for future clinical studies in PAH.
Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM–VSMC network.
MicroRNA-34a: the bad guy in age-related vascular diseases
The age-related vasculature alteration is the prominent risk factor for vascular diseases (VD), namely, atherosclerosis, abdominal aortic aneurysm, vascular calcification (VC) and pulmonary arterial hypertension (PAH). The chronic sterile low-grade inflammation state, alias inflammaging, characterizes elderly people and participates in VD development. MicroRNA34-a (miR-34a) is emerging as an important mediator of inflammaging and VD. miR-34a increases with aging in vessels and induces senescence and the acquisition of the senescence-associated secretory phenotype (SASP) in vascular smooth muscle (VSMCs) and endothelial (ECs) cells. Similarly, other VD risk factors, including dyslipidemia, hyperglycemia and hypertension, modify miR-34a expression to promote vascular senescence and inflammation. miR-34a upregulation causes endothelial dysfunction by affecting ECs nitric oxide bioavailability, adhesion molecules expression and inflammatory cells recruitment. miR-34a-induced senescence facilitates VSMCs osteoblastic switch and VC development in hyperphosphatemia conditions. Conversely, atherogenic and hypoxic stimuli downregulate miR-34a levels and promote VSMCs proliferation and migration during atherosclerosis and PAH. MiR34a genetic ablation or miR-34a inhibition by anti-miR-34a molecules in different experimental models of VD reduce vascular inflammation, senescence and apoptosis through sirtuin 1 Notch1, and B-cell lymphoma 2 modulation. Notably, pleiotropic drugs, like statins, liraglutide and metformin, affect miR-34a expression. Finally, human studies report that miR-34a levels associate to atherosclerosis and diabetes and correlate with inflammatory factors during aging. Herein, we comprehensively review the current knowledge about miR-34a-dependent molecular and cellular mechanisms activated by VD risk factors and highlight the diagnostic and therapeutic potential of modulating its expression in order to reduce inflammaging and VD burn and extend healthy lifespan.
Autophagy in cardiovascular biology
Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. In this Review, we discuss the potential for targeting autophagy therapeutically and our vision for where this exciting biology may lead in the future.
Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating hormone that acts primarily on the kidney and parathyroid. With declining kidney function there is an increase in circulating FGF23 levels, which is associated with vascular calcification and mortality in chronic kidney disease. Whether FGF23 exerts direct effects on vasculature is unclear. We evaluated the expression of Klotho and FGF receptors in rat aortic rings and rat aorta vascular smooth muscle cells maintained in culture by reverse transcription–PCR, western blotting, and immunostaining. Signaling pathways underlying FGF23 effects were assessed by western blotting, and effects of FGF23 on osteogenic markers and phosphate transporters were assessed by real-time reverse transcription–PCR. We detected Klotho and FGFR1 in total aorta but not in vascular smooth muscle cells. FGF23 augmented phosphate-induced vascular calcification in the aortic rings from uremic rats and dose dependently increased ERK1/2 phosphorylation in Klotho-overexpressing but not naive vascular smooth muscle cells. FGF23-induced ERK1/2 phosphorylation was inhibited by SU5402 (FGFR1 inhibitor) and U0126 (MEK inhibitor). FGF23 enhanced phosphate-induced calcification in Klotho-overexpressing vascular smooth muscle cells and increased osteoblastic marker expression, which was inhibited by U0126. In contrast, phosphate transporter expression was not affected by phosphate or FGF23. Thus, FGF23 enhances phosphate-induced vascular calcification by promoting osteoblastic differentiation involving the ERK1/2 pathway.
Evogliptin prevents ceramide-induced pyroptosis during calcification via modulation of NLRP3/GSDM-D mediated pathway in Vascular Smooth Muscle Cells
Evogliptin, an anti-diabetic drug had positive impact on various cardiovascular events including inflammation and vascular calcification (VC), an active process driven by vascular smooth muscle cell (VSMC) phenotypic transition. Sphingolipids such as ceramide (CER) mediates inflammation and VC in the vascular tissue. We investigated whether evogliptin ameliorate phenotypic transition and pyroptosis in VSMCs as underlying cause of VC. In cultured VSMCs, isolated from the aorta of (C57/BL6) mouse, we observed more severe calcification with prior treatment of CER in Pi-treated VSMCs as detected by Alizarin Red Staining. Prior CER- stimulation led to a marked upregulation of osteogenic markers such as RUNX2, OPN, BMP2 and decreased contractile markers SM22-α and α- SMA in Pi-treated VSMCs as compared to control cells. In addition, increased expression of pyroptotic markers such as NLRP3, GSDM-D, IL-1β, IL-18, and LDH release was observed with prior treatment of CER in Pi-treated VSMCs as compared to control cells. Furthermore, MCC950 (NLRP3 inhibitor), disulfiram (GSDM-D inhibitor) and evogliptin significantly downregulated osteogenic and pyroptotic markers including LDH release in both Pi-induced only and CER + Pi-treated VSMCs. Moreover, GW4869 (SMase inhibitor) and evogliptin significantly reduced SMase activity in sphingomyelin (SM)-induced VSMCs as compared to both Pi and SM only-treated groups. Also, the cleavage efficiency of GSDM-D was high in Pi and CER + Pi groups which was reduced with prior treatment of evogliptin. Hence, our data demonstrate that evogliptin alleviates VC by blocking phenotypic transition and associated pyroptosis via modulation of NLRP3/GSDM-D mediated pathway in CER-induced VSMCs.