Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
39,483 result(s) for "Muscle Proteins - metabolism"
Sort by:
Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules
Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.
No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males
Plant-derived proteins have been suggested to have less anabolic properties when compared with animal-derived proteins. Whether blends of plant- and animal-derived proteins can compensate for their lesser anabolic potential has not been assessed. The present study compares post-prandial muscle protein synthesis rates following the ingestion of milk protein with wheat protein or a blend of wheat plus milk protein in healthy, young males. In a randomised, double-blind, parallel-group design, 36 males (23 (sd 3) years) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK), 30 g wheat protein (WHEAT) or a 30 g blend combining 15 g wheat plus 15 g milk protein (WHEAT+MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent myofibrillar protein synthesis rates. Ingestion of protein increased myofibrillar protein synthesis rates in all treatments (P < 0·001). Post-prandial myofibrillar protein synthesis rates did not differ between MILK v. WHEAT (0·053 (sd 0·013) v. 0·056 (sd 0·012) %·h−1, respectively; t test P = 0·56) or between MILK v. WHEAT+MILK (0·053 (sd 0·013) v. 0·059 (sd 0·025) %·h−1, respectively; t test P = 0·46). In conclusion, ingestion of 30 g milk protein, 30 g wheat protein or a blend of 15 g wheat plus 15 g milk protein increases muscle protein synthesis rates in young males. Furthermore, muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g wheat protein or a blend with 15 g milk plus 15 g wheat protein in healthy, young males.
Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth
Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome. Gupta et al. show that the membrane repair factor Myoferlin protects against membrane damage of pancreatic cancer lysosomes to sustain enhanced lysosomal function and promote tumour growth.
The muscle protein synthetic response following corn protein ingestion does not differ from milk protein in healthy, young adults
Plant-derived proteins are generally believed to possess lesser anabolic properties when compared with animal-derived proteins. This is, at least partly, attributed to the lower leucine content of most plant-derived proteins. Corn protein has a leucine content that is highest among most plant-derived proteins and it even exceeds the levels observed in animal-derived proteins such as whey protein. Therefore, this study aimed to compare muscle protein synthesis rates following the ingestion of 30 g corn protein and a 30 g blend of corn plus milk protein with 30 g milk protein. In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received primed continuous L-[ring-13C6]-phenylalanine infusions and ingested 30 g corn protein (CORN), 30 g milk protein (MILK), or a 30 g proteinblend with 15 g corn plus 15 g milk protein (CORN + MILK). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. The results show that Ingestion of protein increased myofibrillar protein synthesis rates from basal post-absorptive values in all treatments(P < 0.001). Post-prandial myofibrillar protein synthesis rates did not differ between CORN vs MILK (0.053 ± 0.013 vs 0.053 ± 0.013%∙h−1, respectively; t-test P = 0.90), or between CORN + MILK vs MILK (0.052 ± 0.024 vs 0.053 ± 0.013%∙h−1, respectively; t-test P = 0.92). Ingestion of 30 g corn protein, 30 g milk protein, or a blend of 15 g corn plus 15 g milk protein robustly increases muscle protein synthesis rates in young males. The muscle protein synthetic response to the ingestion of 30 g corn-derived protein does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Clinical Trial Registry number. NTR6548 (registration date: 27–06-2017) https://www.trialregister.nl/.
Mycoprotein ingestion within or without its wholefood matrix results in equivalent stimulation of myofibrillar protein synthesis rates in resting and exercised muscle of young men
Ingestion of mycoprotein stimulates skeletal muscle protein synthesis (MPS) rates to a greater extent than concentrated milk protein when matched for leucine content, potentially attributable to the wholefood nature of mycoprotein. We hypothesised that bolus ingestion of mycoprotein as part of its wholefood matrix would stimulate MPS rates to a greater extent compared with a leucine-matched bolus of protein concentrated from mycoprotein. Twenty-four healthy young (age, 21 ± 2 years; BMI, 24 ± 3 kg.m2) males received primed, continuous infusions of L-[ring-2H5]phenylalanine and completed a bout of unilateral resistance leg exercise before ingesting either 70 g mycoprotein (MYC; 31·4 g protein, 2·5 g leucine; n 12) or 38·2 g of a protein concentrate obtained from mycoprotein (PCM; 28·0 g protein, 2·5 g leucine; n 12). Blood and muscle samples (vastus lateralis) were taken pre- and (4 h) post-exercise/protein ingestion to assess postabsorptive and postprandial myofibrillar protein fractional synthetic rates (FSR) in resting and exercised muscle. Protein ingestion increased plasma essential amino acid and leucine concentrations (P < 0·0001), but more rapidly (both 60 v. 90 min; P < 0·0001) and to greater magnitudes (1367 v. 1346 μmol·l–1 and 298 v. 283 μmol·l–1, respectively; P < 0·0001) in PCM compared with MYC. Protein ingestion increased myofibrillar FSR (P < 0·0001) in both rested (MYC, Δ0·031 ± 0·007 %·h–1 and PCM, Δ0·020 ± 0·008 %·h–1) and exercised (MYC, Δ0·057 ± 0·011 %·h–1 and PCM, Δ0·058 ± 0·012 %·h–1) muscle, with no differences between conditions (P > 0·05). Mycoprotein ingestion results in equivalent postprandial stimulation of resting and post-exercise myofibrillar protein synthesis rates irrespective of whether it is consumed within or without its wholefood matrix.
Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial
Background Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. Objective We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. Methods Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous l -[ring- 13 C 6 ]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. Results Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h −1 , p  = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h −1 , p  = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h −1 , p  = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h −1 , p  = 0.440) protein synthesis rates. Conclusions Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. Clinical Trial Registration NTR7251 .
Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12
Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative conditions. They are characterized by progressive spastic paralysis of the legs as a result of selective, length-dependent degeneration of the axons of the corticospinal tract. Mutations in 3 genes encoding proteins that work together to shape the ER into sheets and tubules - receptor accessory protein 1 (REEP1), atlastin-1 (ATL1), and spastin (SPAST) - have been found to underlie many cases of HSP in Northern Europe and North America. Applying Sanger and exome sequencing, we have now identified 3 mutations in reticulon 2 (RTN2), which encodes a member of the reticulon family of prototypic ER-shaping proteins, in families with spastic paraplegia 12 (SPG12). These autosomal dominant mutations included a complete deletion of RTN2 and a frameshift mutation predicted to produce a highly truncated protein. Wild-type reticulon 2, but not the truncated protein potentially encoded by the frameshift allele, localized to the ER. RTN2 interacted with spastin, and this interaction required a hydrophobic region in spastin that is involved in ER localization and that is predicted to form a curvature-inducing/sensing hairpin loop domain. Our results directly implicate a reticulon protein in axonopathy, show that this protein participates in a network of interactions among HSP proteins involved in ER shaping, and further support the hypothesis that abnormal ER morphogenesis is a pathogenic mechanism in HSP.
The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment
Chronic sleep loss is a potent catabolic stressor, increasing the risk of metabolic dysfunction and loss of muscle mass and function. To provide mechanistic insight into these clinical outcomes, we sought to determine if acute sleep deprivation blunts skeletal muscle protein synthesis and promotes a catabolic environment. Healthy young adults (N = 13; seven male, six female) were subjected to one night of total sleep deprivation (DEP) and normal sleep (CON) in a randomized cross‐over design. Anabolic and catabolic hormonal profiles were assessed across the following day. Postprandial muscle protein fractional synthesis rate (FSR) was assessed between 13:00 and 15:00 and gene markers of muscle protein degradation were assessed at 13:00. Acute sleep deprivation reduced muscle protein synthesis by 18% (CON: 0.072 ± 0.015% vs. DEP: 0.059 ± 0.014%·h‐1, p = .040). In addition, sleep deprivation increased plasma cortisol by 21% (p = .030) and decreased plasma testosterone by 24% (p = .029). No difference was found in the markers of protein degradation. A single night of total sleep deprivation is sufficient to induce anabolic resistance and a procatabolic environment. These acute changes may represent mechanistic precursors driving the metabolic dysfunction and body composition changes associated with chronic sleep deprivation. Acute sleep deprivation decreases muscle protein synthesis in young, healthy males and females. Acute sleep deprivation promotes a catabolic hormonal environment. Future research should investigate sex‐specific differences.
Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training
PurposeTo examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training.MethodsUsing an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6–10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7–9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo–Yo Intermittent Recovery level 2 test (Yo–Yo IR2) was performed.ResultsMuscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na+–K+ ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo–Yo IR2 performance than SSG.ConclusionSpeed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players.
Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance
Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.