Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
66,046 result(s) for "Muscle proteins"
Sort by:
Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12
Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative conditions. They are characterized by progressive spastic paralysis of the legs as a result of selective, length-dependent degeneration of the axons of the corticospinal tract. Mutations in 3 genes encoding proteins that work together to shape the ER into sheets and tubules - receptor accessory protein 1 (REEP1), atlastin-1 (ATL1), and spastin (SPAST) - have been found to underlie many cases of HSP in Northern Europe and North America. Applying Sanger and exome sequencing, we have now identified 3 mutations in reticulon 2 (RTN2), which encodes a member of the reticulon family of prototypic ER-shaping proteins, in families with spastic paraplegia 12 (SPG12). These autosomal dominant mutations included a complete deletion of RTN2 and a frameshift mutation predicted to produce a highly truncated protein. Wild-type reticulon 2, but not the truncated protein potentially encoded by the frameshift allele, localized to the ER. RTN2 interacted with spastin, and this interaction required a hydrophobic region in spastin that is involved in ER localization and that is predicted to form a curvature-inducing/sensing hairpin loop domain. Our results directly implicate a reticulon protein in axonopathy, show that this protein participates in a network of interactions among HSP proteins involved in ER shaping, and further support the hypothesis that abnormal ER morphogenesis is a pathogenic mechanism in HSP.
The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review
Plant-sourced proteins offer environmental and health benefits, and research increasingly includes them in study formulas. However, plant-based proteins have less of an anabolic effect than animal proteins due to their lower digestibility, lower essential amino acid content (especially leucine), and deficiency in other essential amino acids, such as sulfur amino acids or lysine. Thus, plant amino acids are directed toward oxidation rather than used for muscle protein synthesis. In this review, we evaluate the ability of plant- versus animal-based proteins to help maintain skeletal muscle mass in healthy and especially older people and examine different nutritional strategies for improving the anabolic properties of plant-based proteins. Among these strategies, increasing protein intake has led to a positive acute postprandial muscle protein synthesis response and even positive long-term improvement in lean mass. Increasing the quality of protein intake by improving amino acid composition could also compensate for the lower anabolic potential of plant-based proteins. We evaluated and discussed four nutritional strategies for improving the amino acid composition of plant-based proteins: fortifying plant-based proteins with specific essential amino acids, selective breeding, blending several plant protein sources, and blending plant with animal-based protein sources. These nutritional approaches need to be profoundly examined in older individuals in order to optimize protein intake for this population who require a high-quality food protein intake to mitigate age-related muscle loss.
Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth
Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.Gupta et al. show that the membrane repair factor Myoferlin protects against membrane damage of pancreatic cancer lysosomes to sustain enhanced lysosomal function and promote tumour growth.
Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding
Ingesting protein-containing supplements and foods provides essential amino acids (EAA) necessary to increase muscle and whole-body protein synthesis (WBPS). Large variations exist in the EAA composition of supplements and foods, ranging from free-form amino acids to whole protein foods. We sought to investigate how changes in peripheral EAA after ingesting various protein and free amino acid formats altered muscle and whole-body protein synthesis. Data were compiled from four previous studies that used primed, constant infusions of L-(ring-2H5)-phenylalanine and L-(3,3-2H2)-tyrosine to determine fractional synthetic rate of muscle protein (FSR), WBPS, and circulating EAA concentrations. Stepwise regression indicated that max EAA concentration (EAACmax; R2 = 0.524, p < 0.001), EAACmax (R2 = 0.341, p < 0.001), and change in EAA concentration (ΔEAA; R = 0.345, p < 0.001) were the strongest predictors for postprandial FSR, Δ (change from post absorptive to postprandial) FSR, and ΔWBPS, respectively. Within our dataset, the stepwise regression equation indicated that a 100% increase in peripheral EAA concentrations increases FSR by ~34%. Further, we observed significant (p < 0.05) positive (R = 0.420–0.724) correlations between the plasma EAA area under the curve above baseline, EAACmax, ΔEAA, and rate to EAACmax to postprandial FSR, ΔFSR, and ΔWBPS. Taken together our results indicate that across a large variety of EAA/protein-containing formats and food, large increases in peripheral EAA concentrations are required to drive a robust increase in muscle and whole-body protein synthesis.
Skeletal muscle derived Musclin protects the heart during pathological overload
Cachexia is associated with poor prognosis in chronic heart failure patients, but the underlying mechanisms of cachexia triggered disease progression remain poorly understood. Here, we investigate whether the dysregulation of myokine expression from wasting skeletal muscle exaggerates heart failure. RNA sequencing from wasting skeletal muscles of mice with heart failure reveals a reduced expression of Ostn , which encodes the secreted myokine Musclin, previously implicated in the enhancement of natriuretic peptide signaling. By generating skeletal muscle specific Ostn knock-out and overexpressing mice, we demonstrate that reduced skeletal muscle Musclin levels exaggerate, while its overexpression in muscle attenuates cardiac dysfunction and myocardial fibrosis during pressure overload. Mechanistically, Musclin enhances the abundance of C-type natriuretic peptide (CNP), thereby promoting cardiomyocyte contractility through protein kinase A and inhibiting fibroblast activation through protein kinase G signaling. Because we also find reduced OSTN expression in skeletal muscle of heart failure patients, augmentation of Musclin might serve as therapeutic strategy. Cachexia is associated with poor prognosis in heart failure. Here the authors show that mice and patients with cardiac cachexia display reduced skeletal muscle expression and circulating levels of Musclin. Musclin ablation in skeletal muscle worsens, while its muscle-specific overexpression ameliorates heart failure in mice.
Myomaker is a membrane activator of myoblast fusion and muscle formation
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. A muscle-specific membrane protein called myomaker is transiently expressed during myogenesis and is both necessary and sufficient to drive myoblast fusion in vivo and in vitro . A muscle-building protein The formation of skeletal muscle fibres depends on the fusion of myoblasts to produce multi-nucleated muscle fibres. Eric Olson and colleagues have identified and characterized a previously unknown skeletal-muscle-specific protein, myomaker, which is required for their fusion into multinucleated fibres. Genetic deletion of myomaker in mice completely abolished myoblast fusion, forced myomaker expression in muscle cells caused excessive fusion, and misexpression in fibroblasts conferred the ability to fuse with myoblasts. These findings provide new insight into the molecular mechanism of muscle formation, and the ability of myomaker to drive fusion of non-muscle cells with muscle cells suggests a novel strategy for enhancing muscle repair.
The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy
Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40-/- mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.
Protein content and amino acid composition of commercially available plant-based protein isolates
The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC–MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.
Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults
The age-related loss of skeletal muscle mass and function is caused, at least in part, by a reduced muscle protein synthetic response to protein ingestion. The magnitude and duration of the postprandial muscle protein synthetic response to ingested protein is dependent on the quantity and quality of the protein consumed. This review characterises the anabolic properties of animal-derived and plant-based dietary protein sources in older adults. While approximately 60 % of dietary protein consumed worldwide is derived from plant sources, plant-based proteins generally exhibit lower digestibility, lower leucine content and deficiencies in certain essential amino acids such as lysine and methionine, which compromise the availability of a complete amino acid profile required for muscle protein synthesis. Based on currently available scientific evidence, animal-derived proteins may be considered more anabolic than plant-based protein sources. However, the production and consumption of animal-derived protein sources is associated with higher greenhouse gas emissions, while plant-based protein sources may be considered more environmentally sustainable. Theoretically, the lower anabolic capacity of plant-based proteins can be compensated for by ingesting a greater dose of protein or by combining various plant-based proteins to provide a more favourable amino acid profile. In addition, leucine co-ingestion can further augment the postprandial muscle protein synthetic response. Finally, prior exercise or n-3 fatty acid supplementation have been shown to sensitise skeletal muscle to the anabolic properties of dietary protein. Applying one or more of these strategies may support the maintenance of muscle mass with ageing when diets rich in plant-based protein are consumed.