Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
97
result(s) for
"Muscular Atrophy, Spinal - cerebrospinal fluid"
Sort by:
Profiling neuroinflammatory markers and response to nusinersen in paediatric spinal muscular atrophy
2024
Neuroinflammation is an emerging clinical feature in spinal muscular atrophy (SMA). Characterizing neuroinflammatory cytokines in cerebrospinal fluid (CSF) in SMA and their response to nusinersen is important for identifying new biomarkers and understanding the pathophysiology of SMA. We measured twenty-seven neuroinflammatory markers in CSF from twenty SMA children at different time points, and correlated the findings with motor function improvement. At baseline, MCP-1, IL-7 and IL-8 were significantly increased in SMA1 patients compared to SMA2, and were significantly correlated with disease severity. After six months of nusinersen treatment, CSF levels of eotaxin and MIP-1β were markedly reduced, while IL-2, IL-4 and VEGF-A were increased. The decreases in eotaxin and MIP-1β were associated with changes in motor scores in SMA1. We also detected a transient increase in MCP-1, MDC, MIP-1α, IL-12/IL-23p40 and IL-8 after the first or second injection of nusinersen, followed by a steady return to baseline levels within six months. Our study provides a detailed profile of neuroinflammatory markers in SMA CSF. Our data confirms the potential of MCP-1, eotaxin and MIP-1β as new neuroinflammatory biomarkers in SMA1 and indicates the presence of a subtle inflammatory response to nusinersen during the early phase of treatment.
Journal Article
Thrombospondin-4 as potential cerebrospinal fluid biomarker for therapy response in pediatric spinal muscular atrophy
2024
Background and purpose
Spinal muscular atrophy (SMA) as the second most common neurodegenerative disorder in childhood is characterized by the deficiency of survival of motor neuron (
SMN
) protein leading predominantly to degeneration of alpha motor neurons and consequently to progressive muscle weakness and atrophy. Besides some biomarkers like
SMN2
copy number therapeutic biomarkers for SMA with known relevance for neuromuscular transmission are lacking. Here, we examined the potential of Thrombospondin-4 (TSP4) to serve as a cerebrospinal fluid (CSF) biomarker, which may also indicate treatment response.
Methods
We used untargeted proteomic analyses to determine biomarkers in CSF samples derived from pediatric pre-symptomatic (
n
= 6) and symptomatic (
n
= 4) SMA patients. The identified biomarker TSP4 was then validated in additional 68 CSF samples (9 adult and 24 pediatric SMA patients, 5 adult and 13 pediatric non-disease controls in addition to 17 pediatric disease controls) by enzyme-linked immunosorbent assay (ELISA) as an additional analytical approach.
Results
Untargeted proteomic analyses of CSF identified a dysregulation of TSP4 and revealed a difference between pre-symptomatic SMA patients and patients identified after the onset of first symptoms. Subsequent ELISA-analyses showed that TSP4 is decreased in pediatric but not adult SMA patients. CSF of pediatric patients with other neurological disorders demonstrated no alteration of TSP4 levels. Furthermore, CSF TSP4 levels of pediatric SMA patients increased after first dose of Nusinersen.
Conclusions
We found that TSP4 levels are exclusively reduced in CSF of pediatric SMA patients and increase after treatment, leading us to the hypothesis that TSP4 could serve as a CSF biomarker with the potential to monitor treatment response in pediatric SMA patients. Moreover, TSP4 enable to distinguish pre-symptomatic and symptomatic patients suggesting a potential to serve as a stratification marker.
Journal Article
Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy
2024
Aim
The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302).
Methods
In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway enrichment analysis were applied for analysis.
Results
The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in SMA3.
Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of complement cascade in SMA3.
Conclusions
This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expression in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.
Journal Article
Cytokines in cerebrospinal fluid as a prognostic predictor after treatment of nusinersen in SMA patients
by
Li, Ya-Nan
,
Cheng, Xi
,
Fan, Ya-Bei
in
Antisense oligonucleotides
,
Antisense therapy
,
Biomarkers
2024
Recent studies have suggested that neuroinflammation may play a role in the progression of spinal muscular atrophy (SMA), and this may influence the efficacy of antisense oligonucleotide treatment. This study explored the biomarkers associated with SMA and the efficacy of nusinersen therapy. Methods: Fifteen patients with SMA were enrolled and their motor function (World Health Organization motor milestone, Hammersmith Functional Motor Scale Expanded (HFMSE), and Revised Upper Limb Module [RULM] scores, and 6-minute walking test) was evaluated before, during (63 days), and after (6 months) nusinersen treatment. The concentrations of monocyte chemoactive protein 1 (MCP1), tumour necrosis factor-alpha (TNF-α), and interleukin (IL)-10 in the cerebrospinal fluid were measured at the indicated time points, and their correlations with motor function were analysed. Results: A significant increase in MCP1 was observed after 6 month’s treatment compared with that before treatment, while TNF-α gradually decreased over the course of treatment. IL-10 levels were negatively correlated with HFMSE scores before treatment, and reductions in IL-10 levels were correlated with improvements in RULM scores. Conclusions: This study suggests that neuroinflammation may be associated with the severity of SMA and with the therapeutic effects of nusinersen, which could have clinical implications in the treatment of SMA.
•Motor function of SMA patients improved significantly after nusinersen treatment.•The concentrations of MCP-1,TNF-α and IL-10 in the CSF were changed during the treatment.•IL-10 levels were correlated with motor function scores.
Journal Article
Serum neurofilament light chain in pediatric spinal muscular atrophy patients and healthy children
2021
Objective
The aim of this study was to evaluate neurofilament light chain as blood biomarker for disease activity in children and adolescents with different types of spinal muscular atrophy (SMA) and establish pediatric reference values.
Methods
We measured neurofilament light chain levels in serum (sNfL) and cerebral spinal fluid (cNfL) of 18 children with SMA and varying numbers of SMN2 copies receiving nusinersen by single‐molecule array (SiMoA) assay and analyzed correlations with baseline characteristics and motor development. Additionally, we examined sNfL in 97 neurologically healthy children.
Results
Median sNfL levels in treatment‐naïve SMA patients with 2 SMN2 copies are higher than in those with >2 SMN2 copies (P < 0.001) as well as age‐matched controls (P = 0.010) and decline during treatment. The median sNfL concentration of healthy controls is 4.73 pg/mL with no differences in sex (P = 0.486) but age (P < 0.001). In all children with SMA, sNfL levels correlate strongly with cNfL levels (r = 0.7, P < 0.001). In children with SMA and 2 SMN2 copies, sNfL values correlate with motor function (r = –0.6, P = 0.134), in contrast to older SMA children with >2 SMN2 copies (r = –0.1, P = 0.744).
Interpretation
Reference sNfL values of our large pediatric control cohort may be applied for future studies. Strong correlations between sNfL and cNfL together with motor function suggest that sNfL may be a suitable biomarker for disease activity in children with 2 SMN2 copies and those with >2 SMN2 copies within their initial stages during early childhood.
Journal Article
Restoration of Nusinersen Levels Following Treatment Interruption in People With Spinal Muscular Atrophy: Simulations Based on a Population Pharmacokinetic Model
by
Berger, Zdenek
,
MacCannell, Drew
,
Finkel, Richard S.
in
Atrophy
,
Cerebrospinal fluid
,
Clinical trials
2022
Background
Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons.
Objective
The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing.
Methods
Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period.
Results
Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels.
Conclusions
Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.
Plain Language Summary
Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.
Journal Article
NFL is a marker of treatment response in children with SMA treated with nusinersen
by
Wahlgren, Lisa
,
Rostasy, Kevin
,
Blennow, Kaj
in
Antisense oligonucleotides
,
Biomarkers
,
Cerebrospinal fluid
2019
BackgroundRecently, the anti-sense oligonucleotide drug nusinersen was approved for spinal muscular atrophy (SMA) and our aim was to find a response marker for this treatment.MethodsTwelve children with SMA type 1 and two copies of the SMN2 gene were included in a consecutive single-center study. The children were sampled for CSF at baseline and every time nusinersen was given intrathecally. The neuronal biomarkers NFL and tau and the glial biomarker GFAP were measured. Motor function was assessed using CHOP INTEND. Eleven similarly aged children, who were investigated to rule out neurological or infectious disease, were used as controls.ResultsBaseline levels of NFL (4598 ± 981 vs 148 ± 39, P = 0.001), tau (939 ± 159 vs 404 ± 86, P = 0.02), and GFAP (236 ± 44 vs 108 ± 26, P = 0.02) were significantly higher in SMA children than controls. Motor function improved by nusinersen treatment in median 13 points corresponding to 5.4 points per month of treatment (P = 0.001). NFL levels typically normalized ( < 380 pg/ml) between the fourth and fifth doses [− 879.5 pg/mL/dose, 95% CI (− 1243.4, − 415.6), P = 0.0001], tau levels decreased [− 112.6 pg/mL/dose, 95% CI (− 206–7, − 18.6), P = 0.01], and minor decreases in GFAP were observed [− 16.9 pg/mL/dose, 95% CI (− 22.8, − 11.2), P = 0.02] by nusinersen treatment. Improvement in motor function correlated with reduced concentrations of NFL (rho = − 0.64, P = 0.03) and tau (rho = − 0.85, P = 0.0008) but not GFAP.ConclusionsNusinersen normalized the axonal damage marker NFL and correlated with motor improvement in children with SMA. NFL may, therefore, be a novel biomarker to monitor treatment response early in the disease course.
Journal Article
Dysregulation of cerebrospinal fluid metabolism profiles in spinal muscular atrophy patients: a case control study
2024
Background
Spinal muscular atrophy (SMA) is a neurodegenerative disorder. Although prior studies have investigated the metabolomes of SMA in various contexts, there is a gap in research on cerebrospinal fluid (CSF) metabolomics compared to healthy controls. CSF metabolomics can provide insights into central nervous system function and patient outcomes. This study aims to investigate CSF metabolite profiles in untreated SMA patients to enhance our understanding of SMA metabolic dysregulation.
Methods
This case control study included 15 SMA patients and 14 control subjects. CSF samples were collected, and untargeted metabolomics was conducted to detect metabolites in SMA and control groups.
Results
A total of 118 metabolites abundance were significantly changed between the SMA and control groups. Of those, 27 metabolites with variable importance for the projection (VIP) ≥ 1.5 were identified. The top 5 differential metabolites were N-acetylneuraminic acid (VIP = 2.38, Fold change = 0.43,
P
= 5.49 × 10
–5
), 2,3-dihydroxyindole (VIP = 2.33, Fold change = 0.39,
P
= 1.81 × 10
–4
), lumichrome (VIP = 2.30, Fold change = 0.48,
P
= 7.90 × 10
–5
), arachidic acid (VIP = 2.23, Fold change = 10.79,
P
= 6.50 × 10
–6
), and 10-hydroxydecanoic acid (VIP = 2.23, Fold change = 0.60,
P
= 1.44 × 10
–4
). Cluster analysis demonstrated that the differentially metabolites predominantly clustered within two main categories: protein and amino acid metabolism, and lipid metabolism.
Conclusions
The findings highlight the complexity of SMA, with widespread effects on multiple metabolic pathways, particularly in amino acid and lipid metabolism. N-acetylneuraminic acid may be a potential treatment for functional improvement in SMA. The exact mechanisms and potential therapeutic targets associated with metabolic dysregulation in SMA require further investigation.
Journal Article
Nusinersen treatment and cerebrospinal fluid neurofilaments: An explorative study on Spinal Muscular Atrophy type 3 patients
2020
The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme‐linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response.
Journal Article