Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
308
result(s) for
"Muscular Atrophy, Spinal - etiology"
Sort by:
Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium
by
Deconinck, Nicolas
,
Hiligsmann, Mickaël
,
Marcelis, Lionel
in
692/699/375/1917
,
692/700/478/2772
,
Belgium - epidemiology
2021
Three new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries. In 2018, we launched a 3-year pilot program to screen newborns for SMA in the Belgian region of Liège. This program was rapidly expanding to all of Southern Belgium, a region of approximately 55,000 births annually. During the pilot program, 136,339 neonates were tested for deletion of exon 7 of
SMN1
, the most common cause of SMA. Nine SMA cases with homozygous deletion were identified through this screen. Another patient was identified after presenting with symptoms and was shown to be heterozygous for the
SMN1
exon 7 deletion and a point mutation on the opposite allele. These ten patients were treated. The pilot program has now successfully transitioned into the official neonatal screening program in Southern Belgium. The lessons learned during implementation of this pilot program are reported.
Journal Article
Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy
by
Hunter, Gillian
,
Skehel, Paul A.
,
Riessland, Markus
in
Alternative Splicing
,
Animals
,
beta Catenin - metabolism
2014
The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread perturbations in ubiquitin homeostasis, including reduced levels of ubiquitin-like modifier activating enzyme 1 (UBA1). SMN physically interacted with UBA1 in neurons, and disruption of Uba1 mRNA splicing was observed in the spinal cords of SMA mice exhibiting disease symptoms. Pharmacological or genetic suppression of UBA1 was sufficient to recapitulate an SMA-like neuromuscular pathology in zebrafish, suggesting that UBA1 directly contributes to disease pathogenesis. Dysregulation of UBA1 and subsequent ubiquitination pathways led to β-catenin accumulation, and pharmacological inhibition of β-catenin robustly ameliorated neuromuscular pathology in zebrafish, Drosophila, and mouse models of SMA. UBA1-associated disruption of β-catenin was restricted to the neuromuscular system in SMA mice; therefore, pharmacological inhibition of β-catenin in these animals failed to prevent systemic pathology in peripheral tissues and organs, indicating fundamental molecular differences between neuromuscular and systemic SMA pathology. Our data indicate that SMA-associated reduction of UBA1 contributes to neuromuscular pathogenesis through disruption of ubiquitin homeostasis and subsequent β-catenin signaling, highlighting ubiquitin homeostasis and β-catenin as potential therapeutic targets for SMA.
Journal Article
Immediate effect of spinal magnetic stimulation on camptocormia in Parkinson's disease
2014
Objectives Spinal cord stimulation is a potential therapeutic option for the treatment of Parkinson's disease (PD)-associated symptoms. Repetitive trans-spinal magnetic stimulation (rTSMS) is a non-invasive and safe alternative for stimulation of spinal pathways that has not been studied for therapeutic efficacy in PD. We assessed the benefits of rTSMS on camptocormia, an often treatment-resistant postural abnormality observed in PD patients. Methods We compared rTSMS to sham stimulation in PD patients with camptocormia in a single-centre, randomised, single-blind, crossover, placebo-controlled study. PD patients with camptocormia were administered a single trial of rTSMS (a train of 40 stimuli) or sham treatment followed 1 week later by the alternate treatment. Primary outcome measure was thoracolumbar spine flexion angle in the standing position immediately after the trial. Results Of 320 PD patients examined, 37 had concomitant camptocormia and were randomly assigned to either the rTSMS first group (n=19) or sham first group (n=18). Flexion angle in the standing position decreased by a mean of 10.9° (95% CI 8.1 to 13.65) after rTSMS but remained unchanged after sham stimulation (mean, −0.1°; 95% CI −0.95 to 0.71). The flexion angle while sitting (secondary outcome) decreased by 8.1° (95% CI 5.89 to 10.25) after rTSMS, whereas sham treatment had no significant effect (mean, −0.8°; 95% CI −1.62 to 0.05). Conclusions We found an immediate beneficial effect of rTSMS on camptocormia in PD patients. Although the effect was transient, this successful trial justifies further studies to test if repeated rTSMS treatments can induce longer term improvements in camptocormia associated with PD. Clinical trial registration UMIN Clinical Trials Registry: UMIN000011495.
Journal Article
Nusinersen ameliorates motor function and prevents motoneuron Cajal body disassembly and abnormal poly(A) RNA distribution in a SMA mouse model
by
Tapia, Olga
,
Calderó, Jordi
,
Medina-Samamé, Almudena
in
631/80/304
,
692/617/375
,
Acetyltransferase
2020
Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease characterized by degeneration of spinal cord alpha motor neurons (αMNs). SMA is caused by the homozygous deletion or mutation of the
survival motor neuron 1
(
SMN1
) gene, resulting in reduced expression of SMN protein, which leads to αMN degeneration and muscle atrophy. The majority of transcripts of a second gene (
SMN2
) generate an alternative spliced isoform that lacks exon 7 and produces a truncated nonfunctional form of SMN. A major function of SMN is the biogenesis of spliceosomal snRNPs, which are essential components of the pre-mRNA splicing machinery, the spliceosome. In recent years, new potential therapies have been developed to increase SMN levels, including treatment with antisense oligonucleotides (ASOs). The ASO-nusinersen (Spinraza) promotes the inclusion of exon 7 in
SMN2
transcripts and notably enhances the production of full-length SMN in mouse models of SMA. In this work, we used the intracerebroventricular injection of nusinersen in the SMN∆7 mouse model of SMA to evaluate the effects of this ASO on the behavior of Cajal bodies (CBs), nuclear structures involved in spliceosomal snRNP biogenesis, and the cellular distribution of polyadenylated mRNAs in αMNs. The administration of nusinersen at postnatal day (P) 1 normalized SMN expression in the spinal cord but not in skeletal muscle, rescued the growth curve and improved motor behavior at P12 (late symptomatic stage). Importantly, this ASO recovered the number of canonical CBs in MNs, significantly reduced the abnormal accumulation of polyadenylated RNAs in nuclear granules, and normalized the expression of the pre-mRNAs encoding chondrolectin and choline acetyltransferase, two key factors for αMN homeostasis. We propose that the splicing modulatory function of nusinersen in SMA αMN is mediated by the rescue of CB biogenesis, resulting in enhanced polyadenylated pre-mRNA transcription and splicing and nuclear export of mature mRNAs for translation. Our results support that the selective restoration of SMN expression in the spinal cord has a beneficial impact not only on αMNs but also on skeletal myofibers. However, the rescue of SMN expression in muscle appears to be necessary for the complete recovery of motor function.
Journal Article
Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss
by
Gulino, Rosario
,
Vicario, Nunzio
,
Vecchio, Michele
in
Amyotrophic lateral sclerosis
,
Animals
,
Cholera Toxin - toxicity
2019
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Journal Article
Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy
2017
Spinal muscular atrophy (SMA), the predominant form of motoneuron disease in children and young adults is caused by loss of function of the SMN protein. On the basis of a disrupted splice acceptor site in exon 7, transcripts from a second
SMN
gene in humans called
SMN2
cannot give rise to SMN protein at sufficient levels for maintaining function of motoneurons and motor circuits. First clinical trials with Spinraza/Nusinersen, a drug that counteracts disrupted splicing of
SMN2
transcripts, have shown that elevating SMN levels can successfully interfere with motoneuron dysfunction. This review summarizes current knowledge about the pathophysiological alterations in Smn-deficient motoneurons, which lead to defective neuromuscular transmission and altered spinal circuit formation. Both pathological mechanisms are important targets for therapeutic intervention. However, the developmental time window when therapeutic interventions ideally should start is not known. Endogenous SMN expression both from
SMN1
and
SMN2
genes is high at early developmental stages and declines progressively in humans and mice. Thus, therapeutic SMN upregulation should start just before SMN declines below a critical threshold, and before irreversible defects occur at neuromuscular junctions and in spinal circuits. Previous results indicate that loss of Smn function leads to synaptic dysfunction during a stage of neuromuscular development when synaptic strength determines which synapses are maintained or not. This time window appears as an important target for therapy, which possibly could be supported by additional strategies that strengthen synaptic transmission.
Journal Article
Role of Stress Granules and RNA-Binding Proteins in Neurodegeneration: A Mini-Review
by
Wolozin, Benjamin
,
Liu-Yesucevitz, Liqun
,
Youmans, Katie
in
Age differences
,
Aging
,
Aging - genetics
2013
The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA-binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic polyglycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be important in the context of unfolded protein diseases. The discovery that mutations in these RBPs can cause familial motoneuron diseases and familial dementias indicates the importance of these genes to neuronal degeneration. Some disorders linked to mutations in RBPs include: amyotrophic lateral sclerosis, frontotemporal dementia and spinal muscular atrophy. These RBPs also associate with pathological structures in other neurodegenerative diseases, including Huntington's chorea, Creutzfeldt-Jakob disease, and Alzheimer's disease. Interestingly, protein levels of RBPs change across the aging spectrum and may be linked to other age-related disorders, such as type 2 diabetes. The link between SG pathways and proteins linked to neurodegenerative diseases suggests a potential role for common pathways in both processes, such as those involved in translational control, and highlights potentially novel targets for therapeutic intervention in neurodegenerative diseases.
Journal Article
Impact of Movement Disorders on Management of Spinal Deformity in the Elderly
by
Ha, Yoon
,
Smith, Justin S.
,
Shaffrey, Christopher I.
in
Aged
,
Back surgery
,
Disease Management
2015
Abstract
Spinal deformities are frequent and disabling complications of movement disorders such as Parkinson disease and multiple system atrophy. The most distinct spinal deformities include camptocormia, antecollis, Pisa syndrome, and scoliosis. Spinal surgery has become lower risk and more efficacious for complex spinal deformities, and thus more appealing to patients, particularly those for whom conservative treatment is inappropriate or ineffective. Recent innovations and advances in spinal surgery have revolutionized the management of spinal deformities in elderly patients. However, spinal deformity surgeries in patients with Parkinson disease remain challenging. High rates of mechanical complications can necessitate revision surgery. The success of spinal surgery in patients with Parkinson disease depends on an interdisciplinary approach, including both surgeons and movement disorder specialists, to select appropriate surgical patients and manage postoperative movement in order to decrease mechanical failures. Achieving appropriate correction of sagittal alignment with strong biomechanical instrumentation and bone fusion is the key determinant of satisfactory results.
Journal Article
Intraperitoneal delivery of a novel drug‐like compound improves disease severity in severe and intermediate mouse models of Spinal Muscular Atrophy
2019
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that causes progressive muscle weakness and is the leading genetic cause of infant mortality worldwide. SMA is caused by the loss of
survival motor neuron 1
(
SMN1
). In humans, a nearly identical copy gene is present, called
SMN2
. Although
SMN2
maintains the same coding sequence, this gene cannot compensate for the loss of
SMN1
because of a single silent nucleotide difference in
SMN2
exon 7.
SMN2
primarily produces an alternatively spliced isoform lacking exon 7, which is critical for protein function.
SMN2
is an important disease modifier that makes for an excellent target for therapeutic intervention because all SMA patients retain
SMN2
. Therefore, compounds and small molecules that can increase
SMN2
exon 7 inclusion, transcription and SMN protein stability have great potential for SMA therapeutics. Previously, we performed a high throughput screen and established a class of compounds that increase SMN protein in various cellular contexts. In this study, a novel compound was identified that increased SMN protein levels
in vivo
and ameliorated the disease phenotype in severe and intermediate mouse models of SMA.
Journal Article
The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy
2011
Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with the ease of genetic manipulation, make the mouse the most suitable model for exploring the basic pathogenesis of motor neuron loss and for testing potential treatments. Therapies that increase SMN levels, either through direct viral delivery or by enhancing full-length SMN protein expression from the SMN1 paralog, SMN2, are approaching the translational stage of development. It is therefore timely to consider the role of mouse models in addressing aspects of disease pathogenesis that are most relevant to SMA therapy. Here, we review evidence suggesting that the apparent selective vulnerability of motor neurons to SMN deficiency is relative rather than absolute, signifying that therapies will need to be delivered systemically. We also consider evidence from mouse models suggesting that SMN has its predominant action on the neuromuscular system in early postnatal life, during a discrete phase of development. Data from these experiments suggest that the timing of therapy to increase SMN levels might be crucial. The extent to which SMN is required for the maintenance of motor neurons in later life and whether augmenting its levels could treat degenerative motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), requires further exploration.
Journal Article