Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,078 result(s) for "Muscular Atrophy, Spinal - therapy"
Sort by:
Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial
Spinal muscular atrophy is a rare, autosomal recessive, neuromuscular disease caused by biallelic loss of the survival motor neuron 1 (SMN1) gene, resulting in motor neuron dysfunction. In this STR1VE-EU study, we aimed to evaluate the safety and efficacy of onasemnogene abeparvovec gene replacement therapy in infants with spinal muscular atrophy type 1, using broader eligibility criteria than those used in STR1VE-US. STR1VE-EU was a multicentre, single-arm, single-dose, open-label phase 3 trial done at nine sites (hospitals and universities) in Italy (n=4), the UK (n=2), Belgium (n=2), and France (n=1). We enrolled patients younger than 6 months (180 days) with spinal muscular atrophy type 1 and the common biallelic pathogenic SMN1 exon 7–8 deletion or point mutations, and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes [vg]/kg). The outpatient follow-up consisted of assessments once per week starting at day 7 post-infusion for 4 weeks and then once per month until the end of the study (at age 18 months or early termination). The primary outcome was independent sitting for at least 10 s, as defined by the WHO Multicentre Growth Reference Study, at any visit up to the 18 months of age study visit, measured in the intention-to-treat population. Efficacy was compared with the Pediatric Neuromuscular Clinical Research (PNCR) natural history cohort. This trial is registered with ClinicalTrials.gov, NCT03461289 (completed). From Aug 16, 2018, to Sept 11, 2020, 41 patients with spinal muscular atrophy were assessed for eligibility. The median age at onasemnogene abeparvovec dosing was 4·1 months (IQR 3·0–5·2). 32 (97%) of 33 patients completed the study and were included in the ITT population (one patient was excluded despite completing the study because of dosing at 181 days). 14 (44%, 97·5% CI 26–100) of 32 patients achieved the primary endpoint of functional independent sitting for at least 10 s at any visit up to the 18 months of age study visit (vs 0 of 23 untreated patients in the PNCR cohort; p<0·0001). 31 (97%, 95% CI 91–100) of 32 patients in the ITT population survived free from permanent ventilatory support at 14 months compared with six (26%, 8–44) of 23 patients in the PNCR natural history cohort (p<0·0001). 32 (97%) of 33 patients had at least one adverse event and six (18%) had adverse events that were considered serious and related to onasemnogene abeparvovec. The most common adverse events were pyrexia (22 [67%] of 33), upper respiratory infection (11 [33%]), and increased alanine aminotransferase (nine [27%]). One death, unrelated to the study drug, occurred from hypoxic-ischaemic brain damage because of a respiratory tract infection during the study. STR1VE-EU showed efficacy of onasemnogene abeparvovec in infants with symptomatic spinal muscular atrophy type 1. No new safety signals were identified, but further studies are needed to show long-term safety. The benefit–risk profile of onasemnogene abeparvovec seems favourable for this patient population, including those with severe disease at baseline. Novartis Gene Therapies.
Treatment Options in Spinal Muscular Atrophy: A Pragmatic Approach for Clinicians
Spinal muscular atrophy (SMA) is a rare neurodegenerative neuromuscular disorder with a wide phenotypic spectrum of severity. SMA was previously life limiting for patients with the most severe phenotype and resulted in progressive disability for those with less severe phenotypes. This has changed dramatically in the past few years with the approvals of three disease-modifying treatments. We review the evidence supporting the use of currently approved SMA treatments (nusinersen, onasemnogene abeparvovec, and risdiplam), focusing on mechanisms of action, side effect profiles, published clinical trial data, health economics, and pending questions. Whilst there is robust data from clinical trials of efficacy and side effect profile for individual drugs in select SMA populations, there are no comparative head-to-head clinical trials. This presents a challenge for clinicians who need to make recommendations on the best treatment option for an individual patient and we hope to provide a pragmatic approach for clinicians across each SMA profile based on current evidence.
Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial
SPR1NT ( NCT03505099 ) was a Phase III, multicenter, single-arm study to investigate the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated at ≤6 weeks of life. Here, we report final results for 14 children with two copies of SMN2 , expected to develop spinal muscular atrophy (SMA) type 1. Efficacy was compared with a matched Pediatric Neuromuscular Clinical Research natural-history cohort ( n  = 23). All 14 enrolled infants sat independently for ≥30 seconds at any visit ≤18 months (Bayley-III item #26; P  < 0.001; 11 within the normal developmental window). All survived without permanent ventilation at 14 months as per protocol; 13 maintained body weight (≥3rd WHO percentile) through 18 months. No child used nutritional or respiratory support. No serious adverse events were considered related to treatment by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for children expected to develop SMA type 1, highlighting the urgency for universal newborn screening. For presymptomatic infants at risk for SMA type 1, onasemnogene abeparvovec improves motor outcomes, ventilator-free survival, and nutritional/respiratory independence compared with untreated or treated symptomatic patients
Safety and efficacy of risdiplam in patients with type 1 spinal muscular atrophy (FIREFISH part 2): secondary analyses from an open-label trial
Risdiplam is an orally administered therapy that modifies pre-mRNA splicing of the survival of motor neuron 2 (SMN2) gene and is approved for the treatment of spinal muscular atrophy. The FIREFISH study is investigating the safety and efficacy of risdiplam in treated infants with type 1 spinal muscular atrophy versus historical controls. The primary endpoint of part 2 of the FIREFISH study showed that infants with type 1 spinal muscular atrophy attained the ability to sit without support for at least 5 s after 12 months of treatment. Here, we report on the safety and efficacy of risdiplam in FIREFISH part 2 over 24 months of treatment. FIREFISH is an ongoing, multicentre, open-label, two-part study. In FIREFISH part 2, eligible infants (aged 1–7 months at enrolment, with a genetically confirmed diagnosis of spinal muscular atrophy, and two SMN2 gene copies) were enrolled in 14 hospitals in ten countries across Europe, North America, South America, and Asia. Risdiplam was orally administered once daily at 0·2 mg/kg for infants between 5 months and 2 years of age; once an infant reached 2 years of age, the dose was increased to 0·25 mg/kg. Infants younger than 5 months started at 0·04 mg/kg (infants between 1 month and 3 months old) or 0·08 mg/kg (infants between 3 months and 5 months old), and this starting dose was adjusted to 0·2 mg/kg once pharmacokinetic data were available for each infant. The primary and secondary endpoints included in the statistical hierarchy and assessed at month 12 have been reported previously. Here we present the remainder of the secondary efficacy endpoints that were included in the statistical hierarchy at month 24: the ability to sit without support for at least 30 s, to stand alone, and to walk alone, as assessed by the Bayley Scales of Infant and Toddler Development, third edition gross motor subscale. These three endpoints were compared with a performance criterion of 5% that was defined based on the natural history of type 1 spinal muscular atrophy; the results were considered statistically significant if the lower limit of the two-sided 90% CI was above the 5% threshold. FIREFISH is registered with ClinicalTrials.gov, NCT02913482. Recruitment is closed; the 36-month extension period of the study is ongoing. Between March 13 and Nov 19, 2018, 41 infants were enrolled in FIREFISH part 2. After 24 months of treatment, 38 infants were ongoing in the study and 18 infants (44% [90% CI 31–58]) were able to sit without support for at least 30 s (p<0·0001 compared with the performance criterion derived from the natural history of untreated infants with type 1 spinal muscular atrophy). No infants could stand alone (0 [90% CI 0–7]) or walk alone (0 [0–7]) after 24 months of treatment. The most frequently reported adverse event was upper respiratory tract infection, in 22 infants (54%); the most common serious adverse events were pneumonia in 16 infants (39%) and respiratory distress in three infants (7%). Treatment with risdiplam over 24 months resulted in continual improvements in motor function and achievement of developmental motor milestones. The FIREFISH open-label extension phase will provide additional evidence regarding long-term safety and efficacy of risdiplam. F Hoffmann-La Roche.
Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy
In this phase 3 trial, among infants with spinal muscular atrophy, those who received nusinersen were more likely to achieve major motor milestones and less likely to need permanent assisted ventilation than those who underwent a sham procedure.
Gene therapy for spinal muscular atrophy: the Qatari experience
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by hypotonia, progressive muscle weakness, and wasting. Onasemnogene abeparvovec (Zolgensma®) is a novel gene therapy medicine, FDA-approved in May 2019 for the treatment of SMA. This study aimed to describe Qatari experience with onasemnogene abeparvovec by reviewing the clinical outcomes of 9 SMA children (7 SMA type 1 and 2 with SMA type 2) aged 4‒23 months treated between November 2019 and July 2020. Children <2 years with 5q SMA with a bi-allelic mutation in the SMN1 gene were eligible for gene therapy. Liver function (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and total bilirubin), platelet count, coagulation profile, troponin-I levels, and motor scores (Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders [CHOP INTEND]), were regularly monitored following gene therapy. All patients experienced elevated AST or ALT, two experienced high prothrombin time, and one experienced elevated bilirubin; all of these patients were asymptomatic. Furthermore, one event of vomiting after infusion was reported in one patient. Significant improvements in CHOP INTEND scores were observed following therapy. This study describes the short-term outcomes and safety of onasemnogene abeparvovec, which is well tolerated and shows promise for early efficacy.
Taldefgrobep Alfa and the Phase 3 RESILIENT Trial in Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. SMN upregulators offer clinical improvements and increased survival in SMA patients, although significant unmet needs remain. Myostatin, a TGF-β superfamily signaling molecule that binds to the activin II receptor, negatively regulates muscle growth; myostatin inhibition is a promising therapeutic strategy for enhancing muscle. Combining myostatin inhibition with SMN upregulation, a comprehensive therapeutic strategy targeting the whole motor unit, offers promise in SMA. Taldefgrobep alfa is a novel, fully human recombinant protein that selectively binds to myostatin and competitively inhibits other ligands that signal through the activin II receptor. Given a robust scientific and clinical rationale and the favorable safety profile of taldefgrobep in patients with neuromuscular disease, the RESILIENT phase 3, randomized, placebo-controlled trial is investigating taldefgrobep as an adjunct to SMN upregulators in SMA (NCT05337553). This manuscript reviews the role of myostatin in muscle, explores the preclinical and clinical development of taldefgrobep and introduces the phase 3 RESILIENT trial of taldefgrobep in SMA.
Amifampridine safety and efficacy in spinal muscular atrophy ambulatory patients: a randomized, placebo-controlled, crossover phase 2 trial
BackgroundSpinal muscular atrophy (SMA) is an autosomal recessive disease where a deficient amount of SMN protein leads to progressive lower motor neuron degeneration. SMN-enhancing therapies are now available. Yet, fatigue and signs of impaired neuromuscular junction (NMJ) transmission could contribute to SMA phenotype. Amifampridine prolongs presynaptic NMJ terminal depolarization, enhancing neuromuscular transmission.MethodsSMA-001 was a phase 2, 1:1 randomized, double-blind, placebo-controlled crossover study. Ambulatory (walking unaided at least 30 m) SMA Type 3 patients, untreated with SMN-enhancing medications, entered a run-in phase where amifampridine was titrated up to an optimized stable dose. Patients achieving at least three points improvement in Hammersmith Functional Motor Score Expanded (HFMSE) were randomized to amifampridine or placebo, alternatively, in the 28-day double-blind crossover phase. Safety was evaluated by adverse events (AE) collection. Primary efficacy measure was the HFMSE change from randomization. Secondary outcomes included timed tests and quality of life assessment. Descriptive analyses and a mixed effects linear model were used for statistics.ResultsFrom 14 January 2019, 13 patients, mean age 34.5 years (range 18–53), with 5/13 (38.5%) females, were included. No serious AE were reported. Transient paresthesia (33.3%) was the only amifampridine-related AE. Six patients for each treatment sequence were randomized. Amifampridine treatment led to a statistically significant improvement in HFMSE (mean difference 0.792; 95% CI from 0.22 to 1.37; p = 0.0083), compared to placebo, but not in secondary outcomes.DiscussionSMA-001 study provided Class II evidence that amifampridine was safe and effective in treating ambulatory SMA type 3 patients. Clinical Trial Registration: NCT03781479; EUDRACT 2017-004,600-22.
Spinal Muscular Atrophy Treatment in Patients Identified by Newborn Screening—A Systematic Review
Background: In spinal muscular atrophy, clinical trial results indicated that disease-modifying treatments are highly effective when given prior to symptom onset, which has prompted newborn screening programs in growing number of countries. However, prognosis of those patients cannot be inferred from clinical trials conducted in presymptomatic individuals, as in some cases disease presents very early. Methods: we conducted a systematic review of articles published up to January 2023. Results: Among 35 patients with three SMN2 copies treated before 42 days of age and followed-up for at least 18 months, all but one achieved autonomous ambulation. Of 41 patients with two SMN2 copies, who were non-symptomatic at treatment initiation, all achieved a sitting position independently and 31 were able to walk. Of 16 patients with two SMN2 copies followed-up for at least 18 months who presented with symptoms at treatment onset, 3 achieved the walking milestone and all but one were able to sit without support. Conclusions: evaluation of data from 18 publications indicates that the results of early treatment depend on the number of SMN2 copies and the initial neurological status of the patient.
Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy
In this phase 3 trial, among children with later-onset spinal muscular atrophy, those who received nusinersen had improvement in motor-function scores and those who underwent a sham procedure did not.