Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Muscular Dystrophy, Duchenne/genetics/pathology"
Sort by:
North Star Ambulatory Assessment changes in ambulant Duchenne boys amenable to skip exons 44, 45, 51, and 53: A 3 year follow up
The aim of this study was to report 36-month longitudinal changes using the North Star Ambulatory Assessment (NSAA) in ambulant patients affected by Duchenne muscular dystrophy amenable to skip exons 44, 45, 51 or 53. We included 101 patients, 34 had deletions amenable to skip exon 44, 25 exon 45, 19 exon 51, and 28 exon 53, not recruited in any ongoing clinical trials. Five patients were counted to skip exon 51 and 53 since they had a single deletion of exon 52. The difference between subgroups (skip 44, 45, 51 and 53) was significant at 12 (p = 0.043), 24 (p = 0.005) and 36 months (p[less than or equal to]0.001). Mutations amenable to skip exons 53 and 51 had lower baseline values and more negative changes than the other subgroups while those amenable to skip exon 44 had higher scores both at baseline and at follow up. Our results confirm different progression of disease in subgroups of patients with deletions amenable to skip different exons. This information is relevant as current long term clinical trials are using the NSAA in these subgroups of mutations.