Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33,429
result(s) for
"Muscular disease"
Sort by:
Statin-Associated Autoimmune Myopathy
2016
Statins are widely used and lower the risk of death from cardiovascular causes. In a fraction of patients, an autoimmune myopathy may develop, characterized by the development of autoantibodies to the target enzyme, HMG-CoA reductase.
Statins significantly reduce the incidence of cardiovascular disease, are generally safe, and have an acceptable side-effect profile. Indeed, a recent meta-analysis confirmed that mild musculoskeletal problems, such as myalgia, occur in approximately equal numbers of persons treated with statins and those given placebo.
1
Only in rare cases, in approximately 1 of 10,000 treated persons per year,
2
do statins cause serious muscle damage, with weakness and elevated levels of creatine kinase. In the majority of such cases, the patients recover spontaneously after the statin treatment is discontinued.
3
,
4
It is now recognized, however, that in very rare cases, an autoimmune myopathy . . .
Journal Article
Statin-Associated Myopathy: Emphasis on Mechanisms and Targeted Therapy
by
Vinci, Pierandrea
,
Fiotti, Nicola
,
Di Girolamo, Filippo Giorgio
in
Animals
,
Biomarkers
,
Cardiovascular disease
2021
Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a “gold standard”, the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.
Journal Article
Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors
2020
Idiopathic inflammatory myopathies cause progressive muscle weakness and degeneration. Since high-dose glucocorticoids might not lead to full recovery of muscle function, physical exercise is also an important intervention, but some exercises exacerbate chronic inflammation and muscle fibrosis. It is unknown how physical exercise can have both beneficial and detrimental effects in chronic myopathy. Here we show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise-induced muscle damage is needed to establish a state of regenerative inflammation that induces muscle regeneration. In chronic inflammatory myopathy model mice, exercise does not promote FAP senescence or resistance against tumor necrosis factor–mediated apoptosis. Pro-senescent intervention combining exercise and pharmacological AMPK activation reverses FAP apoptosis resistance and improves muscle function and regeneration. Our results demonstrate that the absence of FAP senescence after exercise leads to muscle degeneration with FAP accumulation. FAP-targeted pro-senescent interventions with exercise and pharmacological AMPK activation may constitute a therapeutic strategy for chronic inflammatory myopathy.
Some exercises exacerbate chronic inflammation and muscle fibrosis in chronic myopathy. Here, the authors show that senescence of fibro-adipogenic progenitors (FAPs) in response to exercise induces muscle regeneration, and impaired FAP senescence worsens inflammation and fibrosis in chronic myopathy in mice.
Journal Article
The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass
2021
The dynamic coordination of processes controlling the quality of the mitochondrial network is crucial to maintain the function of mitochondria in skeletal muscle. Changes of mitochondrial proteolytic system, dynamics (fusion/fission), and mitophagy induce pathways that affect muscle mass and performance. When muscle mass is lost, the risk of disease onset and premature death is dramatically increased. For instance, poor quality of muscles correlates with the onset progression of several age-related disorders such as diabetes, obesity, cancer, and aging sarcopenia. To date, there are no drug therapies to reverse muscle loss, and exercise remains the best approach to improve mitochondrial health and to slow atrophy in several diseases. This review will describe the principal mechanisms that control mitochondrial quality and the pathways that link mitochondrial dysfunction to muscle mass regulation.
Journal Article
Persisting Muscle Dysfunction in Cushing’s Syndrome Despite Biochemical Remission
by
Quinkler, Marcus
,
Bidlingmaier, Martin
,
Deutschbein, Timo
in
Adrenocorticotropic hormone
,
Adult
,
Biomarkers - analysis
2020
Abstract
Context
Glucocorticoid-induced myopathy is a characteristic symptom of endogenous Cushing’s syndrome (CS). Its long-term outcome is largely unknown.
Objective
To evaluate long-term muscle function following the remission of endogenous CS.
Study Design
Observational longitudinal cohort study.
Setting
Tertiary care hospitals and a specialized outpatient clinic.
Patients
As part of the prospective multicenter German Cushing’s Registry, we assessed muscle strength in patients with overt endogenous CS. We studied the patients at the time of diagnosis (n = 88), after 6 months (n = 69), and thereafter annually, following surgical remission over a period of up to 4 years (1 year: n = 55; 2 years: n = 34; 3 years: n = 29; 4 years: n = 22). Muscle function was evaluated by hand grip strength and by chair rising test.
Results
Grip strength was decreased to 83% of normal controls (100%) at the time of diagnosis. It further decreased to 71% after 6 months in remission (P ≤ 0.001) and showed no improvement during further follow-up compared with baseline. Chair rising test performance improved initially (8 seconds at baseline vs 7 seconds after 6 months, P = 0.004) but remained at this reduced level thereafter (7 seconds after 3 years vs 5 seconds in controls, P = 0.038). In multivariate analysis, we identified, as predictors for long-term muscle dysfunction, age, waist-to-hip ratio, and hemoglobin A1c at baseline. Furthermore, muscle strength during follow-up was strongly correlated with quality of life.
Conclusion
This study shows that CS-associated myopathy does not spontaneously resolve during remission. This calls for action to identify effective interventions to improve muscle dysfunction in this setting.
Journal Article
Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction
by
Inagi, Reiko
,
Nishi, Hiroshi
,
Higashihara, Takaaki
in
anemia
,
Dyslipidemias - complications
,
endoplasmic reticulum stress
2019
Dyslipidemia is a common nutritional and metabolic disorder in patients with chronic kidney disease. Accumulating evidence supports the hypothesis that prolonged metabolic imbalance of lipids leads to ectopic fat distribution in the peripheral organs (lipotoxicity), including the kidney, heart, and skeletal muscle, which accelerates peripheral inflammation and afflictions. Thus, lipotoxicity may partly explain progression of renal dysfunction and even extrarenal complications, including renal anemia, heart failure, and sarcopenia. Additionally, endoplasmic reticulum stress activated by the unfolded protein response pathway plays a pivotal role in lipotoxicity by modulating the expression of key enzymes in lipid synthesis and oxidation. Here, we review the molecular mechanisms underlying lipid deposition and resultant tissue damage in the kidney, heart, and skeletal muscle, with the goal of illuminating the nutritional aspects of these pathologies.
Journal Article
Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis
2011
Critical illness polyneuropathy (CIP) and myopathy (CIM) are complications of critical illness that present with muscle weakness and failure to wean from the ventilator. In addition to prolonging mechanical ventilation and hospitalisation, CIP and CIM increase hospital mortality in patients who are critically ill and cause chronic disability in survivors of critical illness. Structural changes associated with CIP and CIM include axonal nerve degeneration, muscle myosin loss, and muscle necrosis. Functional changes can cause electrical inexcitability of nerves and muscles with reversible muscle weakness. Microvascular changes and cytopathic hypoxia might disrupt energy supply and use. An acquired sodium channelopathy causing reduced muscle membrane and nerve excitability is a possible unifying mechanism underlying CIP and CIM. The diagnosis of CIP, CIM, or combined CIP and CIM relies on clinical, electrophysiological, and muscle biopsy investigations. Control of hyperglycaemia might reduce the severity of these complications of critical illness, and early rehabilitation in the intensive care unit might improve the functional recovery and independence of patients.
Journal Article
GNE Myopathy: Etiology, Diagnosis, and Therapeutic Challenges
by
Malicdan, May C.
,
Huizing, Marjan
,
Carrillo, Nuria
in
Animals
,
Atrophy
,
Biomedical and Life Sciences
2018
GNE myopathy, previously known as hereditary inclusion body myopathy (HIBM), or Nonaka myopathy, is a rare autosomal recessive muscle disease characterized by progressive skeletal muscle atrophy. It has an estimated prevalence of 1 to 9:1,000,000. GNE myopathy is caused by mutations in the GNE gene which encodes the rate-limiting enzyme of sialic acid biosynthesis. The pathophysiology of the disease is not entirely understood, but hyposialylation of muscle glycans is thought to play an essential role. The typical presentation is bilateral foot drop caused by weakness of the anterior tibialis muscles with onset in early adulthood. The disease slowly progresses over the next decades to involve skeletal muscles throughout the body, with relative sparing of the quadriceps until late stages of the disease. The diagnosis of GNE myopathy should be considered in young adults presenting with bilateral foot drop. Histopathologic findings on muscle biopsies include fiber size variation, atrophic fibers, lack of inflammation, and the characteristic “rimmed” vacuoles on modified Gomori trichome staining. The diagnosis is confirmed by the presence of pathogenic (mostly missense) mutations in both alleles of the GNE gene. Although there is no approved therapy for this disease, preclinical and clinical studies of several potential therapies are underway, including substrate replacement and gene therapy-based strategies. However, developing therapies for GNE myopathy is complicated by several factors, including the rare incidence of disease, limited preclinical models, lack of reliable biomarkers, and slow disease progression.
Journal Article
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency
by
Yamada, Kenji
,
Taketani, Takeshi
in
Acyl-CoA dehydrogenase
,
Acyl-CoA Dehydrogenase, Long-Chain - deficiency
,
Bezafibrate
2019
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Journal Article
Integrative Approaches to Myopathies and Muscular Dystrophies: Molecular Mechanisms, Diagnostics, and Future Therapies
by
Żamojda, Katarzyna
,
Ziemian, Maja
,
Chojnowski, Jakub W.
in
Animals
,
Autophagy
,
Cardiomyocytes
2025
Myopathies and muscular dystrophies are a diverse group of rare or ultra-rare diseases that significantly impact patients’ quality of life and pose major challenges for diagnosis and treatment. Despite their heterogeneity, many share common molecular mechanisms, particularly involving sarcomeric dysfunction, impaired autophagy, and disrupted gene expression. This review explores the genetic and pathophysiological foundations of major myopathy subtypes, including cardiomyopathies, metabolic and mitochondrial myopathies, congenital and distal myopathies, myofibrillar myopathies, inflammatory myopathies, and muscular dystrophies. Special emphasis is placed on the role of autophagy dysregulation in disease progression, as well as its therapeutic potential. We discuss emerging diagnostic approaches, such as whole-exome sequencing, advanced imaging, and muscle biopsy, alongside therapeutic strategies, including physiotherapy, supplementation, autophagy modulators, and gene therapies. Gene therapy methods, such as adeno-associated virus (AAV) vectors, CRISPR-Cas9, and antisense oligonucleotide, are evaluated for their promise and limitations. The review also highlights the potential of drug repurposing and artificial intelligence tools in advancing diagnostics and personalized treatment. By identifying shared molecular targets, particularly in autophagy and proteostasis networks, we propose unified therapeutic strategies across multiple myopathy subtypes. Finally, we discuss international research collaborations and rare disease programs that are driving innovation in this evolving field.
Journal Article