Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
996 result(s) for "Mushroom culture"
Sort by:
Edible and medicinal mushrooms
Comprehensive and timely, Edible and Medicinal Mushrooms: Technology and Applications provides the most up to date information on the various edible mushrooms on the market. Compiling knowledge on their production, application and nutritional effects, chapters are dedicated to the cultivation of major species such as Agaricus bisporus, Pleurotus ostreatus, Agaricus subrufescens, Lentinula edodes, Ganoderma lucidum and others. With contributions from top researchers from around the world, topics covered include: • Biodiversity and biotechnological applications • Cultivation technologies • Control of pests and diseases • Current market overview • Bioactive mechanisms of mushrooms • Medicinal and nutritional properties Extensively illustrated with over 200 images, this is the perfect resource for researchers and professionals in the mushroom industry, food scientists and nutritionists, as well as academics and students of biology, agronomy, nutrition and medicine.
Large-scale commercial cultivation of morels: current state and perspectives
Since morels were first successfully cultivated commercially in Sichuan in 2012, morel cultivation has expanded to more than 20 provinces in China. The highest yield currently reaches 15,000 kg/ha. Morel cultivation is characterized by its environmental friendliness, short cycle length, and high profit. However, the yield obtained is unstable which makes morel cultivation a high-risk industry. Although 10 production cycles have passed, there is still a gap between morel cultivation practice and our basic knowledge of morel biology. This mini-review concentrates on the development needs of morel cultivation. We illustrate the key techniques used in the large-scale commercial cultivation of morels and their relevant studies, including nutritional requirements, mechanisms of nutrient bag, soil type, vegetative and reproductive growth conditions, and disease control. This review will be a useful practical reference for the commercial artificial cultivation of morels and promoting the vital technologies required. Key points • Unstable yield still exists after commercial cultivation of morels realized. • There is a gap between cultivation practice and our knowledge of morel biology. • Key techniques are illustrated for morel cultivation practice.
Food Waste Originated Material as an Alternative Substrate Used for the Cultivation of Oyster Mushroom (Pleurotus ostreatus): A Review
Pleurotus ostreatus (P. ostreatus) is considered a high-quality food, rich in proteins and bioactive compounds important for maintaining human health. Lately, a commonly used substrate for oyster mushroom cultivation—wheat straw, is more often replaced by alternative cellulose substrates originated from the agricultural and food industry. Utilization of wastes for mushroom cultivation has its added value: sustainable food waste management, production of high-quality food from low quality waste, as well as solving environmental, economic and global issues. This overview covered three categories of food waste: food-processing wastes, agro-cereal wastes and nut–fruit wastes, the most used for the cultivation P. ostreatus in the period of 2017–2022. Analyzed studies mostly covered the productivity and chemical characterization of the substrate before and after the cultivation process, as well as the morphological characteristics of the fruiting bodies cultivated on a specific substrate. Chemical analyses of mushrooms cultivated on food waste are not adequately covered, which gives room for additional research, considering the influence of substrate type and chemical quality on the fruiting bodies chemical composition.
Insight into the evolutionary and domesticated history of the most widely cultivated mushroom Agaricus bisporus via mitogenome sequences of 361 global strains
Agaricus bisporus is the most widely cultivated edible mushroom in the world with a only around three hundred years known history of cultivation. Therefore, it represents an ideal organism not only to investigate the natural evolutionary history but also the understanding on the evolution going back to the early era of domestication. In this study, we generated the mitochondrial genome sequences of 352 A. bisporus strains and 9 strains from 4 closely related species around the world. The population mitogenomic study revealed all A. bisporus strains can be divided into seven clades, and all domesticated cultivars present only in two of those clades. The molecular dating analysis showed this species origin in Europe on 4.6 Ma and we proposed the main dispersal routes. The detailed mitogenome structure studies showed that the insertion of the plasmid-derived dpo gene caused a long fragment (MIR) inversion, and the distributions of the fragments of dpo gene were strictly in correspondence with these seven clades. Our studies also showed A. bisporus population contains 30 intron distribution patterns (IDPs), while all cultivars contain only two IDPs, which clearly exhibit intron loss compared to the others. Either the loss occurred before or after domestication, that could suggest that the change facilitates their adaptation to the cultivated environment.
Recycling of spent mushroom substrate: Utilization as feed material for the larvae of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae)
Spent mushroom substrate is made from the waste remaining after the harvest of mushrooms. Here, we evaluated the potential of five spent edible fungi (Auricularia cornea, Lentinus edodes, Pleurotus eryngii, P. citrinopileatus and P. ostreatus) substrates as feed sources for Tenebrio molitor larvae. Young larvae did not survive on any substrate except the spent L. edodes substrate (36.7%). The survival rates in young larvae were similar among the different diets in which wheat bran or rice bran was replaced with 0, 20, 30, 40, 50, or 60% spent L. edodes substrate. The weights of the surviving larvae were decreased only when 70% of wheat bran and > 40% of rice bran was replaced with spent L. edodes substrate. In addition, the middle-aged larvae fed wheat bran only were significantly larger than those fed diets with 30~60% spent L. edodes substrate in dry feed, but the larvae of all treatments failed to pupate. Whereas the green feed was added in dry feed, there were no significant differences in pupal weight, pupation rate, pupal duration, adult emergence, or deformed adults among the three treatments in middle-aged larvae that were fed on diets containing 0, 30, or 40% spent L. edodes substrate. Collectively, these results suggest that spent L. edodes substrate has considerable potential to be used as a partial replacement (< 40%) of conventional feed for T. molitor, and spent mushroom substrate waste may be recycled as feed material for resource insects.
Feeding growing button mushrooms: The role of substrate mycelium to feed the first two flushes
A number of experiments were done to further our understanding of the substrate utilization in button mushroom crops ( Agaricus bisporus ). An analysis of the degradation of dry matter of the substrate during a crop cycle revealed that for pin formation the upper 1/3rd layer is used, for the production of flush one all layers are involved and for flush two mainly the lower 1/3 layer is used. A reduction in substrate depth leads to a decrease in yield/m 2 but an apparent increase in yield per tonne of substrate with a lower mushroom quality. A short daily interruption of the connection between the casing soil with the substrate results in a delay of the first flush. Interruptions with only part of the substrate did not lead to delay in production. Daily interruption of the connection with all or only part of the substrate leads to a shift in yield from flush one to flush two but the total yield remains unchanged. The mycelial biomass in the substrate increases from filling up to pinning, has a steeper increase during flush one, and is levelling off during flush two, indicating that in the period of venting and up to/including flush one, enzymes are secreted by growing hyphae generating nutrients to feed a fixed amount of mushroom biomass for two flushes. A sidewise extension of the substrate (without casing soil, thus not producing mushrooms) showed that the substrate at a distance more than somewhere between 20–50 cm away from the casing soil does not contribute to feeding mushrooms in the first two flushes. The observations are discussed with respect to relevant previous research.
Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters
ABSTRACT Spent mushroom substrate (SMS) of Pleurotus ostreatus was supplemented with wheat bran and soybean flour and used as substrate for a new cultivation cycle of the oyster mushrooms Pleurotus ostreatus and Pleurotus pulmonarius. The bioconversion efficiency of mushrooms produced over substrate (BE%) used and the chemical composition of sporophores were evaluated. The concentration of mycelial mass, crude exopolysaccharide content and laccase enzyme activity were also determined at the supplemented SMS before inoculation, at 50% and 100% of colonization stages in the new cultivation and in the final re-utilized SMS. The laccase enzyme was extracted to examine SMS potential for the dephenolization of olive mill and winery wastewaters. Results showed that both Pleurotus species exhibited BE over 185%, demonstrating this bioprocess could represent a promising strategy to convert SMS into nutritional food. Data also indicate the strong positive impact that SMS could have in the solid wastes’ management and agribusiness enhancement. Spent mushroom substrate of Pleurotus ostreatus was used for a second cultivation cycle of the mushrooms Pleurotus ostreatus and Pleurotus pulmonarius and dephenolization of olive mill and winery.
Influence of Agaricus bisporus establishment and fungicidal treatments on casing soil metataxonomy during mushroom cultivation
The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation ( Agaricus bisporus ) while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for. In addition, the microbiota dynamics and evolution (bacterial and fungal communities) in peat-based casing along the process of incubation of A. bisporus have been studied, while comparing the effect of fungicide treatment (chlorothalonil and metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities in the raw material to a specific microbial composition driven by the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus . Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, with A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency of the crop.
Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products
Mushrooms are the gifts of the non-green revolution; they are not limited by land demand or specific growth requirements. Nearly 14,000 species of mushrooms are on record thus far; of these, only 2200 species are deemed edible. Only 650 species from this list have been cultivated and consumed. Farmed on waste, mushrooms are rich reservoirs of proteins, polysaccharides, metabolites, minerals and vitamins. In the following review, various edible mushrooms have been listed and their nutritional aspects and their associated contributions have been discussed. Furthermore, the commercial mushroom-based products that are on the market have been surveyed. The challenges facing the use of mushroom and mushroom products as foods, functional foods and nutraceuticals have been presented. The need to seek options to troubleshoot the current limitations has also been discussed.
Ichu Valorization by Pleurotus spp. Cultivation and Potential of the Residual Substrate as a Biofertilizer
The high-Andean grass Jarava ichu (Poaceae) plays a vital role in water regulation and aquifer recharge. However, its limited use is often linked to forest fires, highlighting the need for sustainable alternatives. Therefore, this study aims to explore the valorization of ichu as a substrate for the cultivation of Pleurotus spp. (P. citrinopileatus, P. djamor, and P. ostreatus) and to evaluate the potential of the residual substrate as a biofertilizer, offering an ecological alternative to grassland burning in the Peruvian Andes. Samples of ichu from the district of Tomás (Lima, Peru) were used as culture substrate, analyzing productivity indicators such as crop cycle (CC), biological efficiency (BE), and production rate (PR), together with the nutritional profile of the fungi and the chemical properties of the residual substrate. The results showed an average biological efficiency of 19.8%, with no significant differences (p > 0.05) in CC, BE, or PR among the species, confirming the viability of ichu as a substrate. The fungi presented a high protein content (24.1–30.41% on a dry basis), highlighting its nutritional value. In addition, the residual substrate exhibited elevated levels of phosphorus (795.9–1296.9 ppm) and potassium (253.1–291.3 ppm) compared to raw ichu (0.11–7.77 ppm for both nutrients). Germination tests on radish seeds showed rates between 80% and 100%, without inhibition, supporting its potential as a biofertilizer. This study demonstrates the double potential of ichu as a substrate for the sustainable production of edible mushrooms of high nutritional value and as a source of biofertilizers.