Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13,697
result(s) for
"Musical register"
Sort by:
Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms
by
Bruce, Ian C.
,
Marie, Céline
,
Trainor, Laurel J.
in
Adult
,
audiovisual equipment
,
Auditory Cortex - physiology
2014
The auditory environment typically contains several sound sources that overlap in time, and the auditory system parses the complex sound wave into streams or voices that represent the various sound sources. Music is also often polyphonic. Interestingly, the main melody (spectral/pitch information) is most often carried by the highest-pitched voice, and the rhythm (temporal foundation) is most often laid down by the lowest-pitched voice. Previous work using electroencephalography (EEG) demonstrated that the auditory cortex encodes pitch more robustly in the higher of two simultaneous tones or melodies, and modeling work indicated that this high-voice superiority for pitch originates in the sensory periphery. Here, we investigated the neural basis of carrying rhythmic timing information in lower-pitched voices. We presented simultaneous high-pitched and low-pitched tones in an isochronous stream and occasionally presented either the higher or the lower tone 50 ms earlier than expected, while leaving the other tone at the expected time. EEG recordings revealed that mismatch negativity responses were larger for timing deviants of the lower tones, indicating better timing encoding for lower-pitched compared with higher-pitch tones at the level of auditory cortex. A behavioral motor task revealed that tapping synchronization was more influenced by the lower-pitched stream. Results from a biologically plausible model of the auditory periphery suggest that nonlinear cochlear dynamics contribute to the observed effect. The low-voice superiority effect for encoding timing explains the widespread musical practice of carrying rhythm in bass-ranged instruments and complements previously established high-voice superiority effects for pitch and melody.
Journal Article
Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy
by
Jozsa, Richard
,
Shepherd, Dan J.
,
Bremner, Michael J.
in
Algorithms
,
Approximation
,
Commuting
2011
We consider quantum computations comprising only commuting gates, known as IQP computations, and provide compelling evidence that the task of sampling their output probability distributions is unlikely to be achievable by any efficient classical means. More specifically, we introduce the class post-IQP of languages decided with bounded error by uniform families of IQP circuits with post-selection, and prove first that post-IQP equals the classical class PP. Using this result we show that if the output distributions of uniform IQP circuit families could be classically efficiently sampled, either exactly in total variation distance or even approximately up to 41 per cent multiplicative error in the probabilities, then the infinite tower of classical complexity classes known as the polynomial hierarchy would collapse to its third level. We mention some further results on the classical simulation properties of IQP circuit families, in particular showing that if the output distribution results from measurements on only O(log n) lines then it may, in fact, be classically efficiently sampled.
Journal Article
Efficient distributed quantum computing
2013
We provide algorithms for efficiently moving and addressing quantum memory in parallel. These imply that the standard circuit model can be simulated with a low overhead by a more realistic model of a distributed quantum computer. As a result, the circuit model can be used by algorithm designers without worrying whether the underlying architecture supports the connectivity of the circuit. In addition, we apply our results to existing memory-intensive quantum algorithms. We present a parallel quantum search algorithm and improve the time-space trade-off for the element distinctness and collision finding problems.
Journal Article
Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond
by
Jiang, L
,
Zibrov, A.S
,
Lukin, M.D
in
ambient temperature
,
Classical and quantum physics: mechanics and fields
,
Coherence
2007
The key challenge in experimental quantum information science is to identify isolated quantum mechanical systems with long coherence times that can be manipulated and coupled together in a scalable fashion. We describe the coherent manipulation of an individual electron spin and nearby individual nuclear spins to create a controllable quantum register. Using optical and microwave radiation to control an electron spin associated with the nitrogen vacancy (NV) color center in diamond, we demonstrated robust initialization of electron and nuclear spin quantum bits (qubits) and transfer of arbitrary quantum states between them at room temperature. Moreover, nuclear spin qubits could be well isolated from the electron spin, even during optical polarization and measurement of the electronic state. Finally, coherent interactions between individual nuclear spin qubits were observed and their excellent coherence properties were demonstrated. These registers can be used as a basis for scalable, optically coupled quantum information systems.
Journal Article
Rewritable digital data storage in live cells via engineered control of recombination directionality
by
Endy, Drew
,
Bonnet, Jerome
,
Subsoontorn, Pakpoom
in
Bacteriophages
,
Bioengineering
,
Biological Sciences
2012
The use of synthetic biological systems in research, healthcare, and manufacturing often requires autonomous history-dependent behavior and therefore some form of engineered biological memory. For example, the study or reprogramming of aging, cancer, or development would benefit from genetically encoded counters capable of recording up to several hundred cell division or differentiation events. Although genetic material itself provides a natural data storage medium, tools that allow researchers to reliably and reversibly write information to DNA in vivo are lacking. Here, we demonstrate a rewriteable recombinase addressable data (RAD) module that reliably stores digital information within a chromosome. RAD modules use serine integrase and excisionase functions adapted from bacteriophage to invert and restore specific DNA sequences. Our core RAD memory element is capable of passive information storage in the absence of heterologous gene expression for over 100 cell divisions and can be switched repeatedly without performance degradation, as is required to support combinatorial data storage. We also demonstrate how programmed stochasticity in RAD system performance arising from bidirectional recombination can be achieved and tuned by varying the synthesis and degradation rates of recombinase proteins. The serine recombinase functions used here do not require cell-specific cofactors and should be useful in extending computing and control methods to the study and engineering of many biological systems.
Journal Article
Implementing the Quantum von Neumann Architecture with Superconducting Circuits
2011
The von Neumann architecture for a classical computer comprises a central processing unit and a memory holding instructions and data. We demonstrate a quantum central processing unit that exchanges data with a quantum random-access memory integrated on a chip, with instructions stored on a classical computer. We test our quantum machine by executing codes that involve seven quantum elements: Two superconducting qubits coupled through a quantum bus, two quantum memories, and two zeroing registers. Two vital algorithms for quantum computing are demonstrated, the quantum Fourier transform, with 66% process fidelity, and the three-qubit Toffoli-class OR phase gate, with 98% phase fidelity. Our results, in combination especially with longer qubit coherence, illustrate a potentially viable approach to factoring numbers and implementing simple quantum error correction codes.
Journal Article
Being Together in Time: Musical Experience and the Mirror Neuron System
2009
THE DISCOVERY OF INDIVIDUAL \"MIRROR NEURONS\"in the macaque brain that fire both when an action is executed and when that same action is observed or heard, and of a homologous system in humans, is leading to an extraordinary conceptual shift in our understanding of perception-action mechanisms, human communication, and empathy. In a recent model of emotional responses to music (Molnar-Szakacs & Overy, 2006), we proposed that music is perceived not only as an auditory signal, but also as intentional, hierarchically organized sequences of expressive motor acts behind the signal; and that the human mirror neuron system allows for corepresentation and sharing of a musical experience between agent and listener. Here, we expand upon this model of Shared Affective Motion Experience (SAME) and discuss its implications for music therapy and special education.We hypothesize that imitation, synchronization, and shared experience may be key elements of successful work in these areas.
Journal Article
Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes
by
Davidson, Howard W.
,
Kappler, John W.
,
Greenbaum, Carla J.
in
Amino Acid Sequence
,
animal disease models
,
Animals
2014
Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA⁹⁷ in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramere loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.
Journal Article
Parallels and Nonparallels between Language and Music
2009
THE PARALLELS BETWEEN LANGUAGE AND MUSIC CAN BE explored only in the context of (a) the differences between them, and (b) those parallels that are also shared with other cognitive capacities. The two differ in many aspects of structure and function, and, with the exception of the metrical grid, all aspects they share appear to be instances of more general capacities.
Journal Article