Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
411 result(s) for "Myeloid Cell Leukemia Sequence 1 Protein - antagonists "
Sort by:
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models
Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo , S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours. S63845 specifically inhibits MCL1 and induces tumour cell death in vitro and in vivo in diverse cancer-derived cell lines with an acceptable safety margin. MCL1 protein as a possible anti-cancer target These authors report the discovery and characterization of a novel inhibitor of the anti-apoptotic pro-survival protein MCL1, which is expressed by multiple tumour types. The compound, termed S63845, activates the BAX/BAK-dependent mitochondrial apoptotic pathway and shows efficacy in several solid tumour models, suggesting that inhibition of MCL1 could be a viable anti-cancer strategy, alone or in combination with other anti-cancer drugs.
Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia
Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683). High expression of Mcl-1 promotes tumorigenesis and resistance to anticancer therapies. Here they report a macrocyclic molecule with high selectivity and affinity for Mcl-1 that exhibits potent anti-tumor effects as single agent and in combination with bortezomib or venetoclax in preclinical models of multiple myeloma and acute myeloid leukemia.
Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia
Improving outcomes in acute myeloid leukemia (AML) remains a major clinical challenge. Overexpression of pro-survival BCL-2 family members rendering transformed cells resistant to cytotoxic drugs is a common theme in cancer. Targeting BCL-2 with the BH3-mimetic venetoclax is active in AML when combined with low-dose chemotherapy or hypomethylating agents. We now report the pre-clinical anti-leukemic efficacy of a novel BCL-2 inhibitor S55746, which demonstrates synergistic pro-apoptotic activity in combination with the MCL1 inhibitor S63845. Activity of the combination was caspase and BAX/BAK dependent, superior to combination with standard cytotoxic AML drugs and active against a broad spectrum of poor risk genotypes, including primary samples from patients with chemoresistant AML. Co-targeting BCL-2 and MCL1 was more effective against leukemic, compared to normal hematopoietic progenitors, suggesting a therapeutic window of activity. Finally, S55746 combined with S63845 prolonged survival in xenograft models of AML and suppressed patient-derived leukemia but not normal hematopoietic cells in bone marrow of engrafted mice. In conclusion, a dual BH3-mimetic approach is feasible, highly synergistic, and active in diverse models of human AML. This approach has strong clinical potential to rapidly suppress leukemia, with reduced toxicity to normal hematopoietic precursors compared to chemotherapy.
Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy
BCL-2 family proteins are central regulators of mitochondrial apoptosis and validated anti-cancer targets. Using small cell lung cancer (SCLC) as a model, we demonstrated the presence of differential addiction of cancer cells to anti-apoptotic BCL-2, BCL-X L or MCL-1, which correlated with the respective protein expression ratio. ABT-263 (navitoclax), a BCL-2/BCL-X L inhibitor, prevented BCL-X L from sequestering activator BH3-only molecules (BH3s) and BAX but not BAK. Consequently, ABT-263 failed to kill BCL-X L -addicted cells with low activator BH3s and BCL-X L overabundance conferred resistance to ABT-263. High-throughput screening identified anthracyclines including doxorubicin and CDK9 inhibitors including dinaciclib that synergized with ABT-263 through downregulation of MCL-1 . As doxorubicin and dinaciclib also reduced BCL-X L , the combinations of BCL-2 inhibitor ABT-199 (venetoclax) with doxorubicin or dinaciclib provided effective therapeutic strategies for SCLC. Altogether, our study highlights the need for mechanism-guided targeting of anti-apoptotic BCL-2 proteins to effectively activate the mitochondrial cell death programme to kill cancer cells. Small cell lung cancer cells (SCLC) are differentially sensitive to inhibitors of the BCL-2 family. Here the authors analyse the response to BH3 mimetics in SCLC, delineate patterns of expression of apoptotic proteins correlated with differential sensitivities and demonstrate a synergistic anti-tumour activity between ABT-199 and anthracyclines or CDK9 inhibitors.
Genetic screens in isogenic mammalian cell lines without single cell cloning
Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor-intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1 , and the DNA damage repair gene PARP1 , identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small-molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts. Isogenic pairs of cell lines are powerful tools but time-consuming to generate. Here the authors conduct genome-wide genetic interactions screens of ‘anchor’ genes with SaCas9 and SpCas9.
Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown
New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM⁺ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2⁺ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti–PD-1 checkpoint inhibition.
Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors
MCL1 is a pivot member of the anti-apoptotic BCL-2 family proteins. While a distinctive feature of MCL1 resides in its efficient ubiquitination and destruction, the deubiquitinase USP9X has been implicated in the preservation of MCL1 expression by removing the polyubiquitin chains. Here we perform an unbiased siRNA screen and identify that the second deubiquitinase, USP13, regulates MCL1 stability in lung and ovarian cancer cells. Mechanistically, USP13 interacts with and stabilizes MCL1 via deubiquitination. As a result, USP13 depletion using CRISPR/Cas9 nuclease system inhibits tumor growth in xenografted nude mice. We further report that genetic or pharmacological inhibition of USP13 considerably reduces MCL1 protein abundance and significantly increases tumor cell sensitivity to BH3 mimetic inhibitors targeting BCL-2 and BCL-XL. Collectively, we nominate USP13 as a novel deubiquitinase which regulates MCL1 turnover in diverse solid tumors and propose that USP13 may be a potential therapeutic target for the treatment of various malignancies. MCL1, a pro-survival BCL-2 related protein with rapid turnover rate, is often dysregulated in cancers. Here, the authors show that MCL1’s stability is regulated by deubiquitinase USP13, and its inhibition sensitises tumor cells to BH3 mimetic inhibitors.
BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies
Synergistic molecular vulnerabilities enhancing hypomethylating agents in myeloid malignancies have remained elusive. RNA-interference drug modifier screens identified antiapoptotic BCL-2 family members as potent 5-Azacytidine-sensitizing targets. In further dissecting BCL-X L , BCL-2 and MCL-1 contribution to 5-Azacytidine activity, siRNA silencing of BCL-X L and MCL-1, but not BCL-2, exhibited variable synergy with 5-Azacytidine in vitro . The BCL-X L , BCL-2 and BCL-w inhibitor ABT-737 sensitized most cell lines more potently compared with the selective BCL-2 inhibitor ABT-199, which synergized with 5-Azacytidine mostly at higher doses. Ex vivo , ABT-737 enhanced 5-Azacytidine activity across primary AML, MDS and MPN specimens. Protein levels of BCL-X L , BCL-2 and MCL-1 in 577 AML patient samples showed overlapping expression across AML FAB subtypes and heterogeneous expression within subtypes, further supporting a concept of dual/multiple BCL-2 family member targeting consistent with RNAi and pharmacologic results. Consequently, silencing of MCL-1 and BCL-X L increased the activity of ABT-199. Functional interrogation of BCL-2 family proteins by BH3 profiling performed on patient samples significantly discriminated clinical response versus resistance to 5-Azacytidine-based therapies. On the basis of these results, we propose a clinical trial of navitoclax (clinical-grade ABT-737) combined with 5-Azacytidine in myeloid malignancies, as well as to prospectively validate BH3 profiling in predicting 5-Azacytidine response.
The Dual PIM/FLT3 Inhibitor MEN1703 Combines Synergistically With Gilteritinib in FLT3‐ITD‐Mutant Acute Myeloid Leukaemia
ABSTRACT MEN1703 is a first‐in‐class, oral, Type I dual PIM/FMS‐like tyrosine kinase 3 inhibitor (FLT3i) investigated in a Phase I/II DIAMOND‐01 trial in patients with acute myeloid leukaemia (AML). Gilteritinib is a highly potent and selective oral FLT3i approved for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib showed strong single‐agent activity in FLT3‐mutated AML, the development of gilteritinib resistance limits response durability, indicating the importance of novel combination strategies to improve disease outcome. PIM kinases govern FLT3‐ITD signalling and increased PIM kinase expression is found in samples from AML patients relapsing on FLT3i. Here, we report that the simultaneous inhibition of PIM and FLT3, through the combination of MEN1703 and gilteritinib, can consistently improve the in vitro/in vivo antitumor activity over the single agents, demonstrating the benefit of this combination. Moreover, we demonstrate that resistance to gilteritinib can be circumvented by combining MEN1703 with gilteritinib. MEN1703 interferes with FLT3 upregulation, Mcl‐1 overexpression and PIM kinase signalling, which are all involved in FLT3i resistance. We also show that MEN1703 downregulates stromal cytokines that promote cytokine‐mediated resistance of AML blast cells to FLT3 inhibition. These results demonstrate the importance of the combination approach to overcome microenvironment‐mediated resistance to FLT3 inhibitors.
Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer
Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC 50 . ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However, a more comprehensive index composed of Mcl-1, Bcl-xL, Bim, Bak and Noxa protein or mRNA expression correlates well with Mcl-1 sensitivity in TNBC and can also predict Mcl-1 dependency in non-small cell lung cancer cell lines.