Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
78
result(s) for
"Myeloproliferation"
Sort by:
Calreticulin and cancer
2021
Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells, CALR operates as a chaperone and Ca
2+
buffer to assist correct protein folding within the ER. Besides favoring the maintenance of cellular proteostasis, these cell-intrinsic CALR functions support Ca
2+
-dependent processes, such as adhesion and integrin signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function
CALR
mutations promote oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably with cancer type. For instance, while genetic
CALR
defects promote pre-neoplastic myeloproliferation, patients with myeloproliferative neoplasms bearing
CALR
mutations often experience improved overall survival as compared to patients bearing wild-type
CALR
. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression and response to cancer therapy.
Journal Article
Oncogenic KrasG12D causes myeloproliferation via NLRP3 inflammasome activation
2020
Oncogenic
Ras
mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic
Kras
G12D
and NLRP3 inflammasome activation in murine and human cells. Mice expressing active
Kras
G12D
in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in
Kras
G12D
mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, Kras
G12D
-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1β axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1β axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.
Oncogenic
Ras
mutations are common drivers in myeloid leukemia. Here, the authors show in patient cells and in mice that oncogenic K-Ras activates NLRP3 inflammasome to drive myeloproliferation, which can be reversed by genetic or pharmacologic NLRP3 blockade.
Journal Article
Polycythemia vera: historical oversights, diagnostic details, and therapeutic views
by
Barbui, Tiziano
,
Tefferi, Ayalew
,
Vannucchi, Alessandro M.
in
692/699/1541/1990/2331
,
692/699/67/1990/2331
,
Aspirin
2021
Polycythemia vera (PV) is a relatively indolent myeloid neoplasm with median survival that exceeds 35 years in young patients, but its natural history might be interrupted by thrombotic, fibrotic, or leukemic events, with respective 20-year rates of 26%, 16%, and 4%. Current treatment strategies in PV have not been shown to prolong survival or lessen the risk of leukemic or fibrotic progression and instead are directed at preventing thrombotic complications. In the latter regard, two risk categories are considered: high (age >60 years or thrombosis history) and low (absence of both risk factors). All patients require phlebotomy to keep hematocrit below 45% and once-daily low-dose aspirin, in the absence of contraindications. Cytoreductive therapy is recommended for high-risk or symptomatic low-risk disease; our first-line drug of choice in this regard is hydroxyurea but we consider pegylated interferon as an alternative in certain situations, including in young women of reproductive age, in patients manifesting intolerance or resistance to hydroxyurea therapy, and in situations where treatment is indicated for curbing phlebotomy requirement rather than preventing thrombosis. Additional treatment options include busulfan and ruxolitinib; the former is preferred in older patients and the latter in the presence of symptoms reminiscent of post-PV myelofibrosis or protracted pruritus. Our drug choices reflect our appreciation for long-term track record of safety, evidence for reduction of thrombosis risk, and broader suppression of myeloproliferation. Controlled studies are needed to clarify the added value of twice- vs once-daily aspirin dosing and direct oral anticoagulants. In this invited review, we discuss our current approach to diagnosis, prognostication, and treatment of PV in general, as well as during specific situations, including pregnancy and splanchnic vein thrombosis.
Journal Article
Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
2018
Somatic mutations in
te
t methylcytosine
dioxygenase 2
(
TET2
), which encodes an epigenetic modifier enzyme, drive the development of haematopoietic malignancies
1
–
7
. In both humans and mice,
TET2
deficiency leads to increased self-renewal of haematopoietic stem cells with a net developmental bias towards the myeloid lineage
1
,
4
,
8
,
9
. However, pre-leukaemic myeloproliferation (PMP) occurs in only a fraction of
Tet2
−/−
mice
8
,
9
and humans with
TET2
mutations
1
,
3
,
5
–
7
, suggesting that extrinsic non-cell-autonomous factors are required for disease onset. Here we show that bacterial translocation and increased interleukin-6 production, resulting from dysfunction of the small-intestinal barrier, are critical for the development of PMP in mice that lack
Tet2
expression in haematopoietic cells. Furthermore, in symptom-free
Tet2
−/−
mice, PMP can be induced by disrupting intestinal barrier integrity, or in response to systemic bacterial stimuli such as the toll-like receptor 2 agonist. PMP was reversed by antibiotic treatment and failed to develop in germ-free
Tet2
−/−
mice, which illustrates the importance of microbial signals in the development of this condition. Our findings demonstrate the requirement for microbial-dependent inflammation in the development of PMP and provide a mechanistic basis for the variation in PMP penetrance observed in
Tet2
−/−
mice. This study will prompt new lines of investigation that may profoundly affect the prevention and management of haematopoietic malignancies.
Microbial signals are crucial to the development of pre-leukaemic myeloproliferation, which can be induced by disrupting the intestinal barrier or by introducing systemic bacterial stimuli in
Tet2
-deficient mice.
Journal Article
Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both
2016
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs.
Journal Article
Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation
2023
Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34
+
progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression.
Enhanced IL-1β signaling pathway causes hematopoietic stem cell (HSC) to differentiate into myeloid cells and contributes to malignant hematopoiesis. Here the authors reveal that HSC differentiation is controlled by balanced levels of IL-1 receptor antagonist (IL-1rn) and IL-1β under steady-state, and that IL-1rn protects against pre-leukemic myelopoiesis by repressing IL-1β signaling.
Journal Article
miR-146a–Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression
by
Magilnick, Nathaniel
,
Reyes, Estefany Y.
,
Inoue, Jun-ichiro
in
Aberration
,
Activation
,
Autoimmunity
2017
microRNA-146a (miR-146a) has been previously implicated as an essential molecular brake, preventing immune overreaction and malignant transformation by attenuating NF-κB signaling, putatively via repression of the Traf6 and Irak1 genes. The exact contribution of miR-146a–mediated silencing of these genes to the control of immune activation is currently unknown. Therefore, we defined the role of the miR-146a–Traf6 signaling axis in the regulation of immune homeostasis using a genetic epistasis analysis in miR-146a
−/− mice. We have uncovered a surprising separation of functions at the level of miR-146a targets. Lowering the Traf6 gene dose and consequent attenuation of NF-κB activation rescued several significant miR-146a
−/− phenotypes, such as splenomegaly, aberrant myeloproliferation, and excessive inflammatory responses. In contrast, decreasing Traf6 expression had no effect on the development of the progressive bone marrow failure phenotype, as well as lymphomagenesis in miR-146a
−/− mice, indicating that miR-146a controls these biological processes through different molecular mechanisms.
Journal Article
Inhibition of ERK1/2 signaling prevents bone marrow fibrosis by reducing osteopontin plasma levels in a myelofibrosis mouse model
by
Vannucchi, Alessandro Maria
,
Losi, Lorena
,
Sartini, Stefano
in
Antibodies
,
Bone marrow
,
Cell proliferation
2023
Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.
Journal Article
Consequences of mutant TET2 on clonality and subclonal hierarchy
2018
Somatic mutations in TET2 are common in myelodysplastic syndromes (MDS), myeloproliferative, and overlap syndromes. TET2 mutant (TET2MT) clones are also found in asymptomatic elderly individuals, a condition referred to as clonal hematopoiesis of indeterminate potential (CHIP). In various entities of TET2MT neoplasia, we examined the phenotype in relation to the strata of TET2 hits within the clonal hierarchy. Using deep sequencing, 1781 mutations were found in 1205 of 4930 patients; 40% of mutant cases were biallelic. Hierarchical analysis revealed that of TET2MT cases >40% were ancestral, e.g., representing 8% of MDS. Higher (earlier) TET2 lesion rank within the clonal hierarchy (greater clonal burden) was associated with impaired survival. Moreover, MDS driven by ancestral TET2MT is likely derived from TET2MT CHIP with a penetrance of ~1%. Following ancestral TET2 mutations, individual disease course is determined by secondary hits. Using multidimensional analyses, we demonstrate how hits following the TET2 founder defect induces phenotypic shifts toward dysplasia, myeloproliferation, or progression to AML. In summary, TET2MT CHIP-derived MDS is a subclass of MDS that is distinct from de novo disease.
Journal Article
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via degradation of p53
2025
The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). The pleckstrin 2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we reveal peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in patients with MPN and in a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2-mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings reveal PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negative regulation of p53, thus providing a target and opportunity for drug repurposing using cyclosporin A to treat MPNs.
Journal Article