Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,930 result(s) for "Myeloproliferative disorders"
Sort by:
A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms
Background Philadelphia (Ph) chromosome-negative myeloproliferative neoplasms (MPNs) are a heterogeneous group of hematopoietic stem cell clonal diseases. Most patients with MPN are asymptomatic at diagnosis although some of them suffer from constitutional symptoms. Thrombosis and bleeding can also be one of the initial manifestations although the reported prevalence varied considerably across the studies. This systematic review and meta-analysis was conducted with the aims to better understand the prevalence and characteristics of thrombosis and bleeding among patients with newly-diagnosed MPN. Methods Using a search strategy that included the terms for myeloproliferative neoplasms, thrombosis, and bleeding, two investigators independently searched for published articles indexed in the MEDLINE and EMBASE databases from inception to August 2018. The pooled prevalence was calculated using the DerSimonian–Laird random-effects model with a double arcsine transformation. Results A total of 29 cohort studies (8 prospective and 21 retrospective) with 13,436 patients with MPN were included into this meta-analysis. At diagnosis, the pooled prevalence of overall thrombosis among patients with MPN was 20.0% (95% CI, 16.6–23.8%; I 2 96%), with the pooled prevalence of arterial thrombosis of 16.2% (95% CI, 13.0–20.0%; I 2 95%) and the pooled prevalence of venous thrombosis of 6.2% (95% CI, 4.9–7.8%; I 2 89%). Common thrombotic events included cerebrovascular disease/transient ischemic attack, coronary heart disease, and deep venous thrombosis. The pooled prevalence of hemorrhagic complications among patients who were newly diagnosed with MPN patients was 6.2% (95% CI, 5.0–7.8%; I 2 85%). Common sites of bleeding included gastrointestinal, mucosal, and cutaneous bleeding. Conclusions Thrombosis and bleeding are common initial manifestations of MPN. Investigations for MPN should be considered for patients who present with unexplained thrombosis or abnormal bleeding.
Myeloproliferative Neoplasms
The myeloproliferative disorders, comprising polycythemia vera, essential thrombocytosis, and myelofibrosis, are clonal hematopoietic cancers that have an indolent course. The clinical manifestations of these entities overlap, as do their genetic drivers. The myeloproliferative neoplasms — polycythemia vera, essential thrombocytosis, and primary myelofibrosis — are unique hematopoietic stem-cell disorders that share mutations that constitutively activate the physiologic signal-transduction pathways responsible for hematopoiesis (Table 1). Consequently, these disorders engage in phenotypic mimicry among themselves, as well as with myeloid neoplasms and even benign hematopoietic disorders. In contrast to the myeloid neoplasms, the myeloproliferative neoplasms have a natural history, with supportive care alone, that is usually measured in decades rather than years. 1 However, a facade of benign myeloproliferation masks a clone of transformed hematopoietic stem cells capable of expansion and transformation to an aggressive . . .
The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion
The new edition of the 2016 World Health Organization (WHO) classification system for tumors of the hematopoietic and lymphoid tissues was published in September 2017. Under the category of myeloproliferative neoplasms (MPNs), the revised document includes seven subcategories: chronic myeloid leukemia, chronic neutrophilic leukemia, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET), chronic eosinophilic leukemia-not otherwise specified and MPN, unclassifiable (MPN-U); of note, mastocytosis is no longer classified under the MPN category. In the current review, we focus on the diagnostic criteria for JAK2/CALR/MPL mutation-related MPNs: PV, ET, and PMF. In this regard, the 2016 changes were aimed at facilitating the distinction between masked PV and JAK2-mutated ET and between prefibrotic/early and overtly fibrotic PMF. In the current communication, we (i) provide practically useful resource tables and graphs on the new diagnostic criteria including outcome, (ii) elaborate on the rationale for the 2016 changes, (iii) discuss the complementary role of mutation screening, (iv) address ongoing controversies and propose solutions, (v) attend to the challenges of applying WHO criteria in routine clinical practice, and (vi) outline future directions from the perspectives of the clinical pathologist.
High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib
We report the clinical presentation and risk factors for survival in 175 patients with myeloproliferative neoplasms (MPN) and COVID-19, diagnosed between February and June 2020. After a median follow-up of 50 days, mortality was higher than in the general population and reached 48% in myelofibrosis (MF). Univariate analysis, showed a significant relationship between death and age, male gender, decreased lymphocyte counts, need for respiratory support, comorbidities and diagnosis of MF, while no association with essential thrombocythemia (ET), polycythemia vera (PV), and prefibrotic-PMF (pre-PMF) was found. Regarding MPN-directed therapy ongoing at the time of COVID-19 diagnosis, Ruxolitinib (Ruxo) was significantly more frequent in patients who died in comparison with survivors ( p  = 0.006). Conversely, multivariable analysis found no effect of Ruxo alone on mortality, but highlighted an increased risk of death in the 11 out of 45 patients who discontinued treatment. These findings were also confirmed in a propensity score matching analysis. In conclusion, we found a high risk of mortality during COVID-19 infection among MPN patients, especially in MF patients and/or discontinuing Ruxo at COVID-19 diagnosis. These findings call for deeper investigation on the role of Ruxo treatment and its interruption, in affecting mortality in MPN patients with COVID-19.
Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey
Background The Philadelphia chromosome−negative myeloproliferative neoplasms (MPN) myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) negatively affect patient quality of life (QoL) and are associated with increased risk of mortality. Methods The MPN Landmark survey was conducted from May to July 2014 in patients with MF, PV, or ET under active management in the United States. The survey assessed respondent perceptions of disease burden and treatment management and included questions on overall disease burden, QoL, activities of daily living, and work productivity. Outcomes were further analyzed by calculated (ie, not respondent-reported) prognostic risk score and symptom severity quartile. Results The survey was completed by 813 respondents (MF, n  = 207; PV, n  = 380; ET, n  = 226). The median respondent age in each of the 3 MPN subtypes ranged from 62 to 66 years; median disease duration was 4 to 7 years. Many respondents reported that they had experienced MPN-related symptoms ≥1 year before diagnosis (MF, 49 %; PV, 61 %; ET, 58 %). Respondents also reported that MPN-related symptoms reduced their QoL, including respondents with low prognostic risk scores (MF, 67 %; PV, 62 %; ET, 57 %) and low symptom severity (MF, 51 %; PV, 33 %; ET, 15 %). Many respondents, including those with a low prognostic risk score, reported that their MPN had caused them to cancel planned activities or call in sick to work at least once in the preceding 30 days (cancel planned activities: MF, 56 %; PV, 35 %; ET, 35 %; call in sick: MF, 40 %; PV, 21 %; ET, 23 %). Conclusions These findings of the MPN Landmark survey support previous research about the symptom burden experienced by patients with MPNs and are the first to detail the challenges that patients with MPNs experience related to reductions in activities of daily living and work productivity.
Heterodimeric JAK–STAT activation as a mechanism of persistence to JAK2 inhibitor therapy
Chronic exposure to JAK2 inhibitors leads to reactivation of downstream signalling through the formation of heterodimers between JAK2 and other JAK kinases in myeloproliferative neoplasms, which can be overcome with Hsp90 inhibitors. Resistance to JAK2 inhibitors Mutations in JAK kinases, in particular JAK2, are frequent in some malignancies and JAK inhibitors have been trialled for example in patients with myeloproliferative neoplasms (MPNs). Here, Ross Levine and colleagues demonstrate that MPN cells can persist under conditions of chronic JAK2 inhibition, because JAK2 forms a heterodimer with other JAK kinases, leading to persistent JAK2 activation. This mode of drug 'persistence' seems to occur in patients treated with JAK2 inhibitor. Therapeutic approaches that induce JAK2 degradation may therefore be more effective than treatment with JAK2 inhibitors alone. The identification of somatic activating mutations in JAK2 (refs  1–4 ) and in the thrombopoietin receptor gene ( MPL ) 5 in most patients with myeloproliferative neoplasm (MPN) led to the clinical development of JAK2 kinase inhibitors 6 , 7 . JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms but does not significantly decrease or eliminate the MPN clone in most patients with MPN. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic inhibition of JAK2. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK–STAT signalling and with heterodimerization between activated JAK2 and JAK1 or TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible: JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, in murine models and in patients treated with JAK2 inhibitors. RNA interference and pharmacological studies show that JAK2-inhibitor-persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors.
Antibody targeting of mutant calreticulin in myeloproliferative neoplasms
Mutations in calreticulin are one of the key disease‐initiating mutations in myeloproliferative neoplasms (MPN). In MPN, mutant calreticulin translates with a novel C‐terminus that leads to aberrant binding to the extracellular domain of the thrombopoietin receptor, MPL. This cell surface neoantigen has become an attractive target for immunological intervention. Here, we summarize recent advances in the development of mutant calreticulin targeting antibodies as a novel therapeutic approach in MPN. Overview of pathogenic mechanisms of mutant calreticulin (CALR) in myeloproliferative neoplasms (MPN) and potential ways to target the mutant calreticulin neoantigen by therapeutic monoclonal antibodies (mAb). 1: Mutant calreticulin is secreted and functions as an immunosuppressor. The mutant calreticulin novel C‐terminus is shown in red. 2: Aberrant binding of mutant calreticulin dimers to the thrombopoietin receptor MPL mediates receptor dimerization and leads to constitutive activation of JAK‐STAT signaling, promoting proliferation of MPN cells. Mutant calreticulin‐MPL binding occurs in the endoplasmic reticulum (ER), with the protein complex trafficking through the Golgi to the cell surface. 3: Therapeutic antibody targeting the novel C‐terminus of mutant calreticulin on the cell surface can prevent dimerization and activation of MPL (i.e. a blocking antibody). A mutant calreticulin antibody with an Fc component could be engineered to enable Fcγ receptor‐mediated immune cell targeting. 4: A bispecific approach targeting both MPL and mutant calreticulin could increase specificity and circumvent trapping of the mAb by secreted mutant calreticulin. 5: mAb‐toxin conjugates could increase efficacy. 6: The mutant calreticulin neoantigen could be targeted by engineered chimeric antigen receptor (CAR)‐T cells. 7: Bispecific antibodies could enable binding of cytotoxic CD3+ T‐cells to mutant calreticulin expressing MPN cells. 8: Circulating mutant calreticulin may bind the mAb and potentially act as a decoy, decreasing mAb availability. Figure was created using BioRender.
Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms
Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50–60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.
Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms
Thrombosis, both in arterial and venous territories, is the major complication of myeloproliferative neoplasms and is responsible for a high rate of morbidity and mortality. The currently accepted risk factors are an age over 60 years and a history of thrombosis. However, many complex mechanisms contribute to this increased prothrombotic risk, with involvement of all blood cell types, plasmatic factors, and endothelial cells. Besides, some cardiovascular events may originate from arterial vasospasm that could contribute to thrombotic complications. In this review, we discuss recent results obtained in mouse models in the light of data obtained from clinical studies. We emphasize on actors of thrombosis that are currently not targeted with current therapeutics but could be promising targets, i.e, neutrophil extracellular traps and vascular reactivity.
Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1
Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 ( JAK2) , Myeloproliferative Leukemia Virus ( MPL ), TET oncogene family member 2 ( TET2 ), Additional Sex Combs-Like 1 ( ASXL1 ), Casitas B-lineage lymphoma proto-oncogene ( CBL ), Isocitrate dehydrogenase ( IDH ) and IKAROS family zinc finger 1 ( IKZF1 ) have been described in BCR-ABL1 -negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2 , ASXL1 , CBL , IDH or IKZF1 mutations in these disorders ranges from 0 to 17%; these latter mutations are more common in chronic ( TET2 , ASXL1 , CBL ) or juvenile ( CBL ) myelomonocytic leukemias, mastocytosis ( TET2 ), myelodysplastic syndromes ( TET2 , ASXL1 ) and secondary acute myeloid leukemia, including blast-phase MPN ( IDH , ASXL1 , IKZF1 ). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation.