Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
806 result(s) for "Myenteric plexus"
Sort by:
Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system
Organoids formed by combining pluripotent-stem-cell-derived human neural crest cells with pluripotent-stem-cell-derived intestinal tissue show functional interstitial cells of Cajal and undergo waves of contraction; these tissues reveal insights into the molecular defects characterizing Hirschsprung's disease. The enteric nervous system (ENS) of the gastrointestinal tract controls many diverse functions, including motility and epithelial permeability. Perturbations in ENS development or function are common, yet there is no human model for studying ENS-intestinal biology and disease. We used a tissue-engineering approach with embryonic and induced pluripotent stem cells (PSCs) to generate human intestinal tissue containing a functional ENS. We recapitulated normal intestinal ENS development by combining human-PSC-derived neural crest cells (NCCs) and developing human intestinal organoids (HIOs). NCCs recombined with HIOs in vitro migrated into the mesenchyme, differentiated into neurons and glial cells and showed neuronal activity, as measured by rhythmic waves of calcium transients. ENS-containing HIOs grown in vivo formed neuroglial structures similar to a myenteric and submucosal plexus, had functional interstitial cells of Cajal and had an electromechanical coupling that regulated waves of propagating contraction. Finally, we used this system to investigate the cellular and molecular basis for Hirschsprung's disease caused by a mutation in the gene PHOX2B . This is, to the best of our knowledge, the first demonstration of human-PSC-derived intestinal tissue with a functional ENS and how this system can be used to study motility disorders of the human gastrointestinal tract.
Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing
Autonomous regulation of the intestine requires the combined activity of functionally distinct neurons of the enteric nervous system (ENS). However, the variety of enteric neuron types and how they emerge during development remain largely unknown. Here, we define a molecular taxonomy of 12 enteric neuron classes within the myenteric plexus of the mouse small intestine using single-cell RNA sequencing. We present cell–cell communication features and histochemical markers for motor neurons, sensory neurons and interneurons, together with transgenic tools for class-specific targeting. Transcriptome analysis of the embryonic ENS uncovers a novel principle of neuronal diversification, where two neuron classes arise through a binary neurogenic branching and all other identities emerge through subsequent postmitotic differentiation. We identify generic and class-specific transcriptional regulators and functionally connect Pbx3 to a postmitotic fate transition. Our results offer a conceptual and molecular resource for dissecting ENS circuits and predicting key regulators for directed differentiation of distinct enteric neuron classes. Imaging and transcriptomic approaches to investigate mouse enteric nervous system diversity and development reveal a new classification of intestinal myenteric neurons and a novel principle of neuronal diversification by postmitotic transitions.
Circuit-specific enteric glia regulate intestinal motor neurocircuits
Glia in the central nervous system exert precise spatial and temporal regulation over neural circuitry on a synapse-specific basis, but it is unclear if peripheral glia share this exquisite capacity to sense and modulate circuit activity. In the enteric nervous system (ENS), glia control gastrointestinal motility through bidirectional communication with surrounding neurons. We combined glial chemogenetics with genetically encoded calcium indicators expressed in enteric neurons and glia to study network-level activity in the intact myenteric plexus of the proximal colon. Stimulation of neural fiber tracts projecting in aboral, oral, and circumferential directions activated distinct populations of enteric glia. The majority of glia responded to both oral and aboral stimulation and circumferential pathways, while smaller subpopulations were activated only by ascending and descending pathways. Cholinergic signaling functionally specifies glia to the descending circuitry, and this network plays an important role in repressing the activity of descending neural pathways, with some degree of cross-inhibition imposed upon the ascending pathway. Glial recruitment by purinergic signaling functions to enhance activity within ascending circuit pathways and constrain activity within descending networks. Pharmacological manipulation of glial purinergic and cholinergic signaling differentially altered neuronal responses in these circuits in a sex-dependent manner. Collectively, our findings establish that the balance between purinergic and cholinergic signaling may differentially control specific circuit activity through selective signaling between networks of enteric neurons and glia. Thus, enteric glia regulate the ENS circuitry in a network-specific manner, providing profound insights into the functional breadth and versatility of peripheral glia.
Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson’s Disease
Epidemiological studies demonstrated that pesticide exposure, such as rotenone and paraquat, increases the risk of Parkinson’s disease (PD). Chronic systemic exposure to rotenone, a mitochondrial complex I inhibitor, could reproduce many features of PD. However, the adoption of the models is limiting because of variability in animal sensitivity and the inability of other investigators to consistently reproduce the PD neuropathology. In addition, most of rotenone models were produced in rats. Here, we tried to establish a high-reproducible rotenone model using C57BL/6J mice. The rotenone mouse model was produced by chronic systemic exposure to a low dose of rotenone (2.5 mg/kg/day) for 4 weeks by subcutaneous implantation of rotenone-filled osmotic mini pump. The rotenone-treated mice exhibited motor deficits assessed by open field, rotarod and cylinder test and gastrointestinal dysfunction. Rotenone treatment decreased the number of dopaminergic neuronal cells in the substantia nigra pars compacta (SNpc) and lesioned nerve terminal in the striatum. In addition, we observed significant reduction of cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) and the intestinal myenteric plexus. Moreover, α-synuclein was accumulated in neuronal soma in the SNpc, DMV and intestinal myenteric plexus in rotenone-treated mice. These data suggest that the low-dose rotenone mouse model could reproduce behavioral and central and peripheral neurodegenerative features of PD and be a useful model for investigation of PD pathogenesis.
Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine
We evaluated the chemical coding of the myenteric plexus in the proximal and distal intestine of gilthead sea bream (Sparus aurata), which represents one of the most farmed fish in the Mediterranean area. The presence of nitric oxide (NO), acetylcholine (ACh), serotonin (5-HT), calcitonin-gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP) containing neurons, was investigated in intestinal whole mount preparations of the longitudinal muscle with attached the myenteric plexus (LMMP) by means of immunohistochemical fluorescence staining. The main excitatory and inhibitory neurochemicals identified in intestinal smooth muscle were ACh, SP, 5HT, and NO, VIP, CGRP. Some neurons displayed morphological features of ascending and descending interneurons and of putative sensory neurons. The expression of these pathways in the two intestinal regions is largely superimposable, although some differences emerged, which may be relevant to the morphological properties of each region. The most important variances are the higher neuronal density and soma size in the proximal intestine, which may depend on the volume of the target tissue. Since in the fish gut the submucosal plexus is less developed, myenteric neurons substantially innervate also the submucosal and epithelial layers, which display a major thickness and surface in the proximal intestine. In addition, myenteric neurons containing ACh and SP, which mainly represent excitatory motor neurons and interneurons innervating the smooth muscle were more numerous in the distal intestine, possibly to sustain motility in the thicker smooth muscle coat. Overall, this study expands our knowledge of the intrinsic innervation that regulates intestinal secretion, absorption and motility in gilthead sea bream and provides useful background information for rational design of functional feeds aimed at improving fish gut health.
Cocaine- and amphetamine-regulated transcript (CART) peptide-positive neuron populations in the enteric nervous system of the porcine descending colon depend on age and gender
The enteric nervous system (ENS) is a complex structure located in the wall of the gastrointestinal tract. One of the less-known active substances found in the ENS is cocaine- and amphetamine-regulated transcript peptide (CART). It is known that CART-positive enteric neurons take part in the reactions to pathological stimuli, but knowledge of physiological stimuli-dependent changes in their population is extremely limited. The aim of the present study was to investigate the age- and gender-dependent diversities in the distribution of CART-positive neurons in the porcine colonic ENS using the double immunofluorescence technique. The obtained results have shown that age affects the number of CART-positive neurons in the colonic ENS and the character and intensity of age-caused changes depend on the type of the enteric plexus, and the most visible changes have been noted in the myenteric plexus in which the percentage of CART-positive neurons amounted to 22.3 ± 0.2% in young females, 20.7 ± 0.4% in young males, 23.7 ± 0.2% in adult females and 25.8 ± 01% in adult males. Moreover, during the present study, sex-dependent diversities in the percentage of CART-positive neurons were found, especially in adult animals. The obtained results suggest that CART in the ENS takes part in neuroplasticity processes occurring during the development, maturation and/or aging of the gastrointestinal tract, as well as that the number of CART-positive neurons is controlled by sex hormones and depends on the gender. However, the elucidation of all aspects connected with the influence of age and gender on the population of CART-positive neurons in the ENS requires further comprehensive studies.
High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors
Background Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. Methods C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. Results HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. Conclusions HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.
Colorectal Cancer Invasion and Atrophy of the Enteric Nervous System: Potential Feedback and Impact on Cancer Progression
Colorectal cancer (CRC) invasion within the large intestine wall results in the replacement of normal tissue architecture by tumour mass. Cancer cells digest the extracellular matrix (ECM) by the release of proteolytic enzymes. The disintegration of matrix ground substance activates several deposited growth factors which stimulate cell proliferation. Stromal (mainly fibroblasts), immune and cancer cells dominate in this area and become involved in a network of multimodal interactions which significantly induce proliferation of colon cancer cells, inhibit their apoptosis and promote their spreading within the local tumour microenvironment. Cancer invasion destroys nerve fibres and neurons of the local enteric nervous system (ENS) and induces subsequent atrophy of the submucosal and myenteric plexuses in areas adjacent to the cancer boundary. Interestingly, the reduction of plexuses’ size is accompanied by the increased number of galanin-immunoreactive neurons and increased galanin content in parts of the colon located close to the tumour. Galanin, a neuroprotective peptide, may inhibit the extrinsic pathway of apoptosis and in this way promote cancer cell survival. The possible role of acetylcholine and some ENS neuropeptides was also discussed. Invasion of cancer cells spreads along nerve fibres with the involvement of locally-released neutrophins which promote, via their specific receptors, cancer cell proliferation and pro-survival signalling pathways. Thus, during CRC development cancer cells and neurons of the ENS release many neurotransmitters/neuropeptides which affect key cellular signalling pathways promoting cancer cell proliferation and pro-survival phenotype. The multiple interactions between ENS neurons, cancer cells and other cell types present in the colon wall increase cancer cell invasiveness and have a negative impact on the course of CRC.
Estrogen receptor β controls proliferation of enteric glia and differentiation of neurons in the myenteric plexus after damage
Injury to the enteric nervous system (ENS) can cause several gastrointestinal (GI) disorders including achalasia, irritable bowel syndrome, and gastroparesis. Recently, a subpopulation of enteric glial cells with neuronal stem/progenitor properties (ENSCs) has been identified in the adult ENS. ENSCs have the ability of reconstituting the enteric neuronal pool after damage of the myenteric plexus. Since the estrogen receptor β (ERβ) is expressed in enteric glial cells and neurons, we investigated whether a selective ERβ agonist, LY3201, can influence neuronal and glial cell differentiation. Myenteric ganglia from the murine muscularis externa were isolated and cultured in either glial cell medium or neuronal medium. In glial cell medium, the number of glial progenitor cells (Sox10⁺) was increased by fourfold in the presence of LY3201. In the neuronal medium supplemented with an antimitotic agent to block glial cell proliferation, LY3201 elicited a 2.7-fold increase in the number of neurons (neurofilament⁺ or HuC/D⁺). In addition, the effect of LY3201 was evaluated in vivo in two murine models of enteric neuronal damage and loss, namely, high-fat diet and topical application of the cationic detergent benzalkonium chloride (BAC) on the intestinal serosa, respectively. In both models, treatment with LY3201 significantly increased the recovery of neurons after damage. Thus, LY3201 was able to stimulate glial-to-neuron cell differentiation in vitro and promoted neurogenesis in the damaged myenteric plexus in vivo. Overall, our study suggests that selective ERβ agonists may represent a therapeutic tool to treat patients suffering from GI disorders, caused by excessive neuronal/glial cell damage.
Three distinct classes of myenteric ganglia in mice and humans: insights from quantitative analyses
The myenteric plexus primarily consists of the myenteric ganglia, which include enteric neurons, synaptic neuropils, and glial cells. Abnormal myenteric plexus formation can result in gastrointestinal disorders. Comprehensive morphological classification studies of myenteric ganglia remain limited. Whole-mount immunofluorescence staining was used to label myenteric ganglia in colon tissue of mice and children. The ganglionic area and the number of intraganglion neurons were quantified by the K-means clustering algorithm. The guts of embryonic day 11.5 (E11.5) mouse were cultured and immunostained to observe the characteristics of developing myenteric ganglia. Myenteric ganglia can be categorized into three groups in the colon tissues of mice and normal children. A similar classification was observed for Tuj1-positive neuronal cell clusters in the midgut of E11.5 mouse. Culture of the E11.5 mouse midgut revealed that the area of post-cultured clusters of developing neurons also fell into three distinct categories, with a noticeable increase compared to pre-culture. The myenteric ganglia in mice and humans can be categorized into three groups based on both the ganglionic area and intraganglion neuron count, and distinct classes of myenteric ganglia may be present during early development.