Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
755
result(s) for
"Myostatin - genetics"
Sort by:
Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression
2009
The effects of timed ingestion of high-quality protein before and after resistance exercise are not well known. In this study, young men were randomized to protein (n = 11), placebo (n = 10) and control (n = 10) groups. Muscle cross-sectional area by MRI and muscle forces were analyzed before and after 21 weeks of either heavy resistance training (RT) or control period. Muscle biopsies were taken before, and 1 and 48 h after 5 × 10 repetition leg press exercise (RE) as well as 21 weeks after RT. Protein (15 g of whey both before and after exercise) or non-energetic placebo were provided to subjects in the context of both single RE bout (acute responses) as well as each RE workout twice a week throughout the 21-week-RT. Protein intake increased (P ≤ 0.05) RT-induced muscle cross-sectional area enlargement and cell-cycle kinase cdk2 mRNA expression in the vastus lateralis muscle suggesting higher proliferating cell activation response with protein supplementation. Moreover, protein intake seemed to prevent 1 h post-RE decrease in myostatin and myogenin mRNA expression but did not affect activin receptor IIb, p21, FLRG, MAFbx or MyoD expression. In conclusion, protein intake close to resistance exercise workout may alter mRNA expression in a manner advantageous for muscle hypertrophy.
Journal Article
Effects of Different Intensities of Resistance Exercise on Regulators of Myogenesis
by
Kreider, Richard B
,
Taylor, Lemuel W
,
Wilborn, Colin D
in
Analysis of Variance
,
Biomarkers - metabolism
,
Biopsy
2009
Wilborn, CD, Taylor, LW, Greenwood, M, Kreider, RB, and Willoughby, DS. Effects of different intensities of resistance exercise on regulators of myogenesis. J Strength Cond Res 23(8)2179-2187, 2009-A single bout of high-intensity resistance exercise is capable of activating the expression of various genes in skeletal muscle involved in hypertrophy such as myosin heavy chain (MHC) isoforms, myogenic regulatory factors (MRFs), and growth factors. However, the specific role exercise intensity plays on the expression of these genes is not well defined. The purpose of this study was to investigate the effects of exercise intensity on MHC (type I, IIA, IIX), MRF (Myo-D, myogenin, MRF-4, myf5), and growth factor (insulin-like growth factor [IGF]-1, IGF-1 receptor [IGF-R1], mechano-growth factor [MGF]) mRNA expression. Thirteen male participants (21.5 ± 2.9 years, 86.1 ± 19.5 kg, 69.7 ± 2.7 in.) completed bouts of resistance exercise involving 4 sets of 18-20 repetitions with 60-65% 1 repetition maximum (1RM) and 4 sets of 8-10 repetitions with 80-85% 1RM. Vastus lateralis biopsies were obtained immediately before exercise, and at 30 minutes, 2 hours, and 6 hours after each bout. The levels of mRNA expression were determined using real-time polymerase chain reaction. Data were analyzed using 2 × 4 multivariate analysis of variance (p ≤ 0.05). For both intensities, MHC type IIX, IGF-1, IGF-R1, MGF, Myo-D, myogenin, MRF-4, and myf5 mRNA were all significantly increased in response to resistance exercise by 2 hours after exercise, whereas myostatin and the cyclin-dependent kinase inhibitor p27 were decreased at 2 hours after exercise (p < 0.05). Resistance exercise between 60-85% 1RM upregulates the mRNA expression of MHC and factors involved in myogenic activation of satellite cells while concomitantly decreasing expression of myogenic inhibitors.
Journal Article
Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity
2013
Purpose
The aim of the study was to examine the acute effects of pre-exercise ingestion of protein, carbohydrate, and a non-caloric placebo on serum concentrations of insulin and cortisol, and the intramuscular gene expression of myostatin- and ubiquitin proteasome pathway (UPP)-related genes following a bout of resistance exercise.
Methods
Ten untrained college-aged men participated in three resistance exercise sessions (3 × 10 at 80 % 1RM for bilateral hack squat, leg press, and leg extension) in a cross-over fashion, which were randomly preceded by protein, carbohydrate, or placebo ingestion 30 min prior to training. Pre-supplement/pre-exercise, 2 h and 6 h post-exercise muscle biopsies were obtained during each session and analyzed for mRNA fold changes in myostatin (MSTN), activin IIB, follistatin-like 3 (FSTL3), SMAD specific E3 ubiquitin protein ligase 1 (SMURF1), forkhead box O3, F-box protein 32 (FBXO32), and Muscle RING-finger protein-1, with beta-actin serving as the housekeeping gene. Gene expression of all genes was analyzed using real-time PCR.
Results
Acute feeding appeared to have no significant effect on myostatin or UPP biomarkers. However, resistance exercise resulted in a significant downregulation of MSTN and FBXO32 mRNA expression and a significant upregulation in FSTL3 and SMURF1 mRNA expression (
p
< 0.05).
Conclusions
An acute bout of resistance exercise results in acute post-exercise alterations in intramuscular mRNA expression of myostatin and UPP markers suggestive of skeletal muscle growth. However, carbohydrate and protein feeding surrounding resistance exercise appear to have little influence on the acute expression of these markers.
Journal Article
Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches
by
Stojkovic, Tanya
,
Voit, Thomas
,
Hanna, Michael
in
692/617/375/374
,
692/698/1671/1668/1973
,
Activin
2017
Muscular dystrophies are characterized by weakness and wasting of skeletal muscle tissues. Several drugs targeting the myostatin pathway have been used in clinical trials to increase muscle mass and function but most showed limited efficacy. Here we show that the expression of components of the myostatin signaling pathway is downregulated in muscle wasting or atrophying diseases, with a decrease of myostatin and activin receptor, and an increase of the myostatin antagonist, follistatin. We also provide in vivo evidence in the congenital myotubular myopathy mouse model (knock-out for the myotubularin coding gene
Mtm1
) that a down-regulated myostatin pathway can be reactivated by correcting the underlying gene defect. Our data may explain the poor clinical efficacy of anti-myostatin approaches in several of the clinical studies and the apparent contradictory results in mice regarding the efficacy of anti-myostatin approaches and may inform patient selection and stratification for future trials.
Drugs targeting myostatin reverse muscle wasting in animal models, but have limited efficacy in patients. The authors show that the myostatin pathway is downregulated in patients, possibly explaining the poor outcome of anti-myostatin approaches, and that it can be reactivated by correcting disease-causing mutations in mice.
Journal Article
A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy
2015
Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 1011 vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 1011 vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases.
Journal Article
Advances and limitations for the treatment of spinal muscular atrophy
2022
Spinal muscular atrophy (5q-SMA; SMA), a genetic neuromuscular condition affecting spinal motor neurons, is caused by defects in both copies of the
SMN1
gene that produces survival motor neuron (SMN) protein. The highly homologous
SMN2
gene primarily expresses a rapidly degraded isoform of SMN protein that causes anterior horn cell degeneration, progressive motor neuron loss, skeletal muscle atrophy and weakness. Severe cases result in limited mobility and ventilatory insufficiency. Untreated SMA is the leading genetic cause of death in young children. Recently, three therapeutics that increase SMN protein levels in patients with SMA have provided incremental improvements in motor function and developmental milestones and prevented the worsening of SMA symptoms. While the therapeutic approaches with Spinraza
®
, Zolgensma
®
, and Evrysdi
®
have a clinically significant impact, they are not curative. For many patients, there remains a significant disease burden. A potential combination therapy under development for SMA targets myostatin, a negative regulator of muscle mass and strength. Myostatin inhibition in animal models increases muscle mass and function. Apitegromab is an investigational, fully human, monoclonal antibody that specifically binds to proforms of myostatin, promyostatin and latent myostatin, thereby inhibiting myostatin activation. A recently completed phase 2 trial demonstrated the potential clinical benefit of apitegromab by improving or stabilizing motor function in patients with Type 2 and Type 3 SMA and providing positive proof-of-concept for myostatin inhibition as a target for managing SMA. The primary goal of this manuscript is to orient physicians to the evolving landscape of SMA treatment.
Journal Article
Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight
by
Gogain, Joseph
,
Koch, Christina
,
Morgan, Andrew
in
Activin
,
Activin Receptors, Type II - genetics
,
Activin Receptors, Type II - metabolism
2020
Among the physiological consequences of extended spaceflight are loss of skeletal muscle and bone mass. One signaling pathway that plays an important role in maintaining muscle and bone homeostasis is that regulated by the secreted signaling proteins, myostatin (MSTN) and activin A. Here, we used both genetic and pharmacological approaches to investigate the effect of targeting MSTN/activin A signaling in mice that were sent to the International Space Station. Wild type mice lost significant muscle and bone mass during the 33 d spent in microgravity. Muscle weights of Mstn −/− mice, which are about twice those of wild type mice, were largely maintained during spaceflight. Systemic inhibition of MSTN/activin A signaling using a soluble form of the activin type IIB receptor (ACVR2B), which can bind each of these ligands, led to dramatic increases in both muscle and bone mass, with effects being comparable in ground and flight mice. Exposure to microgravity and treatment with the soluble receptor each led to alterations in numerous signaling pathways, which were reflected in changes in levels of key signaling components in the blood as well as their RNA expression levels in muscle and bone. These findings have implications for therapeutic strategies to combat the concomitant muscle and bone loss occurring in people afflicted with disuse atrophy on Earth as well as in astronauts in space, especially during prolonged missions
Journal Article
Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs
by
Ward, Christopher W
,
Rodgers, Buel D
in
Activin
,
Activin Receptors - metabolism
,
Activin Receptors - pharmacology
2022
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of “inhibiting the inhibitors,” increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Graphical Abstract
Graphical Abstract
Journal Article
Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes
by
Brusselle, L.
,
Anegón, I.
,
dos Santos-Neto, P. C.
in
Analysis
,
Animal behavior
,
Animal genetic engineering
2015
While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and livestock.
Journal Article
Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism
2013
Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB–dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.
Journal Article