Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,224 result(s) for "N-Methyl-D-aspartic acid receptors"
Sort by:
Neuroprotective effects of tetrandrine against vascular dementia
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studied fully.Here,we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia.Eight weeks after model establishment,rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks.Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials,and spent less time swimming in the target quadrant in probe trials,than sham-operated rats.However,rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats.Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage,and more living cells,in the hippocampus of rats treated with tetrandrine than in untreated model rats.Western blot assay showed that interleukin-1β expression,and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472,were lower in model rats that received tetrandrine than in those that did not.The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression,N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472,and neuronal necrosis.
Case of autoimmune polyendocrine syndrome type 3 complicated with anti‐N‐methyl‐D‐aspartic acid‐receptor encephalitis
Anti‐N‐methyl‐D‐aspartate receptor (NMDA‐R) encephalitis is an autoimmune disorder in which autoantibodies in the limbic system bind to GluN1 subunits of NMDA‐Rs in the brain. We report a rare case of autoimmune polyendocrine syndrome type 3 complicated by anti‐NMDA‐R encephalitis. After hospitalization for type 1 diabetes, the 39‐year‐old patient developed various schizophreniform symptoms and seizures after cold‐like symptoms. These findings are consistent with the diagnosis of anti‐NMDA‐R encephalitis. Immune‐related encephalitis was suspected at the early phase of the disease, and cerebrospinal fluid was positive for anti‐NMDA‐R antibody. Early steroid pulse therapy was initiated during the disease course. The condition improved gradually to full recovery. Early detection and treatment of anti‐NMDA‐R encephalitis should enhance a positive outcome, considering that besides thyroid diseases and type 1 diabetes, various autoimmune diseases are associated with autoimmune polyendocrine syndrome type 3.
Prostate-derived IL-1β upregulates expression of NMDA receptor in the paraventricular nucleus and shortens ejaculation latency in rats with experimental autoimmune prostatitis
Experimental autoimmune prostatitis (EAP)-induced persistent inflammatory immune response can significantly upregulate the expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus (PVN). However, the mechanism has not yet been elucidated. Herein, we screened out the target prostate-derived inflammation cytokines (PDICs) by comparing the inflammatory cytokine levels in peripheral blood and cerebrospinal fluid (CSF) between EAP rats and their controls. After identifying the target PDIC, qualified males in initial copulatory behavior testing (CBT) were subjected to implanting tubes onto bilateral PVN. Next, they were randomly divided into four subgroups (EAP-1, EAP-2, Control-1, and Control-2). After 1-week recovery, EAP-1 rats were microinjected with the target PDIC inhibitor, Control-1 rats were microinjected with the target PDIC, while the EAP-2 and Control-2 subgroups were only treated with the same amount of artificial CSF (aCSF). Results showed that only interleukin-1β(IL-1β) had significantly increased mRNA-expression in the prostate of EAP rats compared to the controls (P < 0.001) and significantly higher protein concentrations in both the serum (P = 0.001) and CSF (P < 0.001) of the EAP groups compared to the Control groups. Therefore, IL-1β was identified as the target PDIC which crosses the blood-brain barrier, thereby influencing the central nervous system. Moreover, the EAP-1 subgroup displayed a gradually prolonged ejaculation latency (EL) in the last three CBTs (all P < 0.01) and a significantly lower expression of NMDA NR1 subunit in the PVN (P = 0.043) compared to the respective control groups after a 10-day central administration of IL-1β inhibitors. However, the Control-1 subgroup showed a gradually shortened EL (P < 0.01) and a significantly higher NR1 expression (P = 0.004) after homochronous IL-1β administration. Therefore, we identified IL-1β as the primary PDIC which shortens EL in EAP rats. However, further studies should be conducted to elucidate the specific molecular mechanisms through which IL-1β upregulates NMDA expression.
An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models
The identification of anti-NMDA receptor (NMDAR) encephalitis about 12 years ago made it possible to recognise that some patients with rapidly progressive psychiatric symptoms or cognitive impairment, seizures, abnormal movements, or coma of unknown cause, had an autoimmune disease. In this disease, autoantibodies serve as a diagnostic marker and alter NMDAR-related synaptic transmission. At symptom onset, distinguishing the disease from a primary psychiatric disorder is challenging. The severity of symptoms often requires intensive care. Other than clinical assessment, no specific prognostic biomarkers exist. The disease is more prevalent in women (with a female to male ratio of around 8:2) and about 37% of patients are younger than 18 years at presentation of the disease. Tumours, usually ovarian teratoma, and herpes simplex encephalitis are known triggers of NMDAR autoimmunity. About 80% of patients improve with immunotherapy and, if needed, tumour removal, but the recovery is slow. Animal models have started to reveal the complexity of the underlying pathogenic mechanisms and will lead to novel treatments beyond immunotherapy. Future studies should aim at identifying prognostic biomarkers and treatments that accelerate recovery.
The Role of NMDA Receptors in Alzheimer’s Disease
In Alzheimer's disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Rare coding variants in ten genes confer substantial risk for schizophrenia
Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3–50, P  < 2.14 × 10 −6 ) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA ( N -methyl- d -aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders 1 , epilepsy and severe neurodevelopmental disorders 2 , although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk 3 , suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach. Whole-exome sequencing identifies ten risk genes for schizophrenia implicated by rare protein-coding variants, a subset of which overlap with risk genes in other neurodevelopmental disorders.
The role of dissociation in ketamine’s antidepressant effects
Ketamine produces immediate antidepressant effects and has inspired research into next-generation treatments. Ketamine also has short term dissociative effects, in which individuals report altered consciousness and perceptions of themselves and their environment. However, whether ketamine’s dissociative side effects are necessary for its antidepressant effects remains unclear. This perspective examines the relationship between dissociative effects and acute and longer-lasting antidepressant response to ketamine and other N-methyl-D-aspartate (NMDA) receptor antagonists. Presently, the literature does not support the conclusion that dissociation is necessary for antidepressant response to ketamine. However, further work is needed to explore the relationship between dissociation and antidepressant response at the molecular, biomarker, and psychological levels. Ketamine is associated with rapid antidepressant effects and temporary dissociative experiences, and this review examines whether these dissociative symptoms are necessary for antidepressant efficacy. Although the current literature does not support this relationship, further work is needed to explore possible associations at the molecular, biomarker, and psychological levels.
Mechanisms of ketamine action as an antidepressant
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer’s disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD)
Numerous placebo-controlled studies have demonstrated the ability of ketamine, an NMDA receptor antagonist, to induce rapid (within hours), transient antidepressant effects when administered intravenously (IV) at subanesthetic doses (0.5 mg/kg over 40 min). However, the optimal antidepressant dose remains unknown. We aimed to compare to active placebo the rapid acting antidepressant properties of a broad range of subanesthetic doses of IV ketamine among outpatients with treatment-resistant depression (TRD). A range of IV ketamine doses were compared to active placebo in the treatment of adult TRD over a 3-day period following a single infusion over 40 min. This was an outpatient study conducted across six US academic sites. Outpatients were 18–70 years old with TRD, defined as failure to achieve a satisfactory response (e.g., less than 50% improvement of depression symptoms) to at least two adequate treatment courses during the current depressive episode. Following a washout period, 99 eligible subjects were randomly assigned to one of the five arms in a 1:1:1:1:1 fashion: a single intravenous dose of ketamine 0.1 mg/kg (n = 18), a single dose of ketamine 0.2 mg/kg (n = 20), a single dose of ketamine 0.5 mg/kg (n = 22), a single dose of ketamine 1.0 mg/kg (n = 20), and a single dose of midazolam 0.045 mg/kg (active placebo) (n = 19). The study assessments (HAM-D-6, MADRS, SDQ, PAS, CGI-S, and CGI-I) were performed at days 0, 1, 3 (endpoint), 5, 7, 14, and 30 to assess the safety and efficacy. The overall group × time interaction effect was significant for the primary outcome measure, the HAM-D-6. In post hoc pairwise comparisons controlling for multiple comparisons, standard dose (0.5 mg/kg) and high dose (1 mg/kg) of intravenous ketamine were superior to active placebo; a low dose (0.1 mg/kg) was significant only prior to adjustment (p = 0.02, p-adj = 0.14, d = −0.82 at day 1). Most of the interaction effect was due to differences at day 1, with no significant adjusted pairwise differences at day 3. This pattern generally held for secondary outcomes. The infusions of ketamine were relatively well tolerated compared to active placebo, except for greater dissociative symptoms and transient blood pressure elevations with the higher doses. Our results suggest that there is evidence for the efficacy of the 0.5 mg/kg and 1.0 mg/kg subanesthetic doses of IV ketamine and no clear or consistent evidence for clinically meaningful efficacy of lower doses of IV ketamine. Trial Registration: NCT01920555.HighlightsQuestion: What is the optimal, rapid antidepressant dose of intravenous (IV) ketamine, an NMDA receptor antagonist?Findings: Our results suggest that there is evidence for the efficacy of the 0.5 mg/kg and 1.0 mg/kg subanesthetic doses of IV ketamine and no clear or consistent evidence for clinically meaningful efficacy of lower doses of IV ketamine. Most of the effect was due to differences at day 1.Meaning: Our results suggest that there is a range of effective, subanesthetic doses of IV ketamine in TRD.