Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
961
result(s) for
"NF-KappaB Inhibitor alpha - metabolism"
Sort by:
Molecular mechanism of IKK catalytic dimer docking to NF-κB substrates
2024
The inhibitor of κB (IκB) kinase (IKK) is a central regulator of NF-κB signaling. All IKK complexes contain hetero- or homodimers of the catalytic IKKβ and/or IKKα subunits. Here, we identify a YDDΦxΦ motif, which is conserved in substrates of canonical (IκBα, IκBβ) and alternative (p100) NF-κB pathways, and which mediates docking to catalytic IKK dimers. We demonstrate a quantitative correlation between docking affinity and IKK activity related to IκBα phosphorylation/degradation. Furthermore, we show that phosphorylation of the motif’s conserved tyrosine, an event previously reported to promote IκBα accumulation and inhibition of NF-κB gene expression, suppresses the docking interaction. Results from integrated structural analyzes indicate that the motif binds to a groove at the IKK dimer interface. Consistently, suppression of IKK dimerization also abolishes IκBα substrate binding. Finally, we show that an optimized bivalent motif peptide inhibits NF-κB signaling. This work unveils a function for IKKα/β dimerization in substrate motif recognition.
The inhibitor of kB kinase (IKK) is a central regulator of NF-kB signalling. Here the authors identify a motif conserved in substrates of canonical and alternative NF-kB pathways which mediates docking to catalytic IKK dimers: they show that phosphorylation of the conserved tyrosine suppresses the docking interaction.
Journal Article
NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly
by
Prabu, J. Rajan
,
Baek, Kheewoong
,
Schulman, Brenda A.
in
101/28
,
631/45/474/2073
,
631/535/1258/1259
2020
Eukaryotic cell biology depends on cullin–RING E3 ligase (CRL)-catalysed protein ubiquitylation
1
, which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD8
2
–
6
. However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1
β-TRCP
promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated IκBα. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin–RING proteins.
A cryo-electron microscopy structure provides insights into the activation of cullin–RING E3 ligases by NEDD8 and the consequent catalysis of ubiquitylation reactions.
Journal Article
Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation
2019
Self-assembling natural drug hydrogels formed without structural modification and able to act as carriers are of interest for biomedical applications. A lack of knowledge about natural drug gels limits there current application. Here, we report on rhein, a herbal natural product, which is directly self-assembled into hydrogels through noncovalent interactions. This hydrogel shows excellent stability, sustained release and reversible stimuli-responses. The hydrogel consists of a three-dimensional nanofiber network that prevents premature degradation. Moreover, it easily enters cells and binds to toll-like receptor 4. This enables rhein hydrogels to significantly dephosphorylate IκBα, inhibiting the nuclear translocation of p65 at the NFκB signalling pathway in lipopolysaccharide-induced BV2 microglia. Subsequently, rhein hydrogels alleviate neuroinflammation with a long-lasting effect and little cytotoxicity compared to the equivalent free-drug in vitro. This study highlights a direct self-assembly hydrogel from natural small molecule as a promising neuroinflammatory therapy.
There is interest in the development of drug-based hydrogels for responsive sustained drug release. Here, the authors report on the self-assembly of natural small molecule, rhein, into hydrogels and the application of the hydrogels as stable controlled release agents for neuro-inflammatory therapy
Journal Article
Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations
by
Shin, Jong-Yeon
,
Lee, Sau-Dan
,
Yip, Kevin Y.
in
692/4028/67/1536
,
692/4028/67/69
,
Carcinoma - genetics
2017
Nasopharyngeal carcinoma (NPC) is an aggressive head and neck cancer characterized by Epstein-Barr virus (EBV) infection and dense lymphocyte infiltration. The scarcity of NPC genomic data hinders the understanding of NPC biology, disease progression and rational therapy design. Here we performed whole-exome sequencing (WES) on 111 micro-dissected EBV-positive NPCs, with 15 cases subjected to further whole-genome sequencing (WGS), to determine its mutational landscape. We identified enrichment for genomic aberrations of multiple negative regulators of the NF-κB pathway, including
CYLD
,
TRAF
3,
NFKBIA
and
NLRC5,
in a total of 41% of cases. Functional analysis confirmed inactivating
CYLD
mutations as drivers for NPC cell growth. The EBV oncoprotein latent membrane protein 1 (LMP1) functions to constitutively activate NF-κB signalling, and we observed mutual exclusivity among tumours with somatic NF-κB pathway aberrations and LMP1-overexpression, suggesting that NF-κB activation is selected for by both somatic and viral events during NPC pathogenesis.
Nasopharyngeal cancer is frequently characterized by Epstein-Barr virus infection. Here, using genomic analyses, the authors find that the tumours harbour mutations in genes involved in the NF-κB signalling pathway or overexpress a viral oncoprotein, latent membrane protein 1.
Journal Article
Anti-inflammatory and anti-excitoxic effects of diethyl oxopropanamide, an ethyl pyruvate bioisoster, exert robust neuroprotective effects in the postischemic brain
2017
Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust neuroprotective effects via its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop novel EP derivatives with greater protective potencies than EP, we generated four EP isosteres, among them the neuroprotective potency of N,N-diethyl-2-oxopropanamide (DEOPA), in which the ethoxy group of EP was replaced with diethylamine, was far greater than that of EP. When DEOPA was administered intravenously (5 mg/kg) to rat middle cerebral artery occlusion (MCAO) model at 6 hrs post-surgery, it suppressed infarct formation, ameliorated neurological and sensory/motor deficits, and inhibited microglial activation and neutrophil infiltrations in the postischemic brain more effectively than EP. In particular, DEOPA markedly suppressed LPS-induced nitrite production and cytokine/chemokine inductions in microglia, neutrophils, and endothelial cells and these effects are attributable to inhibition of the activity of NF-κB by suppressing IκB-α degradation and p65 to DNA binding. In addition, DEOPA suppressed NMDA-induced neuronal cell death in primary cortical neuron cultures by NAD replenishment and suppression of NF-κB activity. Together, these results indicate DEOPA has multi-modal protective effects against ischemic brain damage targeting numerous cell types in the brain and also against other inflammation-related diseases.
Journal Article
TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling
2018
Beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) is crucial for the degradation of IκBα. Our previous transcriptome sequencing analysis revealed that
tetraspanin 15
(
TSPAN15
) was significantly upregulated in clinical oesophageal squamous cell carcinoma (OSCC) tissues. Here, we show that high TSPAN15 expression in OSCC tissues is significantly associated with lymph node and distant metastasis, advanced clinical stage, and poor prognosis. Elevated
TSPAN15
expression is, in part, caused by the reduction of miR-339-5p. Functional studies demonstrate that
TSPAN15
promotes metastatic capabilities of OSCC cells. We further show that TSPAN15 specifically interacts with BTRC to promote the ubiquitination and proteasomal degradation of p-IκBα, and thereby triggers NF-κB nuclear translocation and subsequent activation of transcription of several metastasis-related genes, including ICAM1, VCAM1, uPA, MMP9, TNFα, and CCL2. Collectively, our findings indicate that TSPAN15 may serve as a new biomarker and/or provide a novel therapeutic target to OSCC patients.
BTRC can activate NF-κB signaling through the ubiquitination and degradation of IκB-α. Here the authors show that TSPAN15 promotes metastasis of oesophageal squamous cell cancer by enhancing BTRC induced degradation of IκB-α and subsequent activation of NF-κB.
Journal Article
TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα
2021
NF-κB signaling plays a critical role in tumor growth and treatment resistance in GBM as in many other cancers. However, the molecular mechanisms underlying high, constitutive NF-κB activity in GBM remains to be elucidated. Here, we screened a panel of tripartite motif (TRIM) family proteins and identified TRIM22 as a potential activator of NF-κB using an NF-κB driven luciferase reporter construct in GBM cell lines. Knockout of TRIM22 using Cas9-sgRNAs led to reduced GBM cell proliferation, while TRIM22 overexpression enhanced proliferation of cell populations, in vitro and in an orthotopic xenograft model. However, two TRIM22 mutants, one with a critical RING-finger domain deletion and the other with amino acid changes at two active sites of RING E3 ligase (C15/18A), were both unable to promote GBM cell proliferation over controls, thus implicating E3 ligase activity in the growth-promoting properties of TRIM22. Co-immunoprecipitations demonstrated that TRIM22 bound a negative regulator of NF-κB, NF-κB inhibitor alpha (IκBα), and accelerated its degradation by inducing K48-linked ubiquitination. TRIM22 also formed a complex with the NF-κB upstream regulator IKKγ and promoted K63-linked ubiquitination, which led to the phosphorylation of both IKKα/β and IκBα. Expression of a non-phosphorylation mutant, srIκBα, inhibited the growth-promoting properties of TRIM22 in GBM cell lines. Finally, TRIM22 was increased in a cohort of primary GBM samples on a tissue microarray, and high expression of TRIM22 correlated with other clinical parameters associated with progressive gliomas, such as wild-type IDH1 status. In summary, our study revealed that TRIM22 activated NF-κB signaling through posttranslational modification of two critical regulators of NF-κB signaling in GBM cells.
Journal Article
Whole-exome sequencing identifies multiple loss-of-function mutations of NF-κB pathway regulators in nasopharyngeal carcinoma
by
Kwong, Dora Lai-Wan
,
Yau, Chun Chung
,
Lee, Victor Ho-fun
in
Biological Sciences
,
Carcinoma - genetics
,
Cell Line, Tumor
2016
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with a unique geographical distribution. The genomic abnormalities leading to NPC pathogenesis remain unclear. In total, 135 NPC tumors were examined to characterize the mutational landscape using whole-exome sequencing and targeted resequencing. An APOBEC cytidine deaminase mutagenesis signature was revealed in the somatic mutations. Noticeably, multiple loss-of-function mutations were identified in several NF-κB signaling negative regulators NFKBIA, CYLD, and TNFAIP3. Functional studies confirmed that inhibition of NFKBIA had a significant impact on NF-κB activity and NPC cell growth. The identified loss-of-function mutations in NFKBIA leading to protein truncation contributed to the altered NF-κB activity, which is critical for NPC tumorigenesis. In addition, somatic mutations were found in several cancer-relevant pathways, including cell cycle-phase transition, cell death, EBV infection, and viral carcinogenesis. These data provide an enhanced road map for understanding the molecular basis underlying NPC.
Journal Article
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer
2016
A multi-genomic approach identifies the addiction of
KRAS
-mutant lung cancer cells to XPO1-dependent nuclear export, offering a new therapeutic opportunity.
Druggable targets in KRAS-driven tumours
These authors use RNA interference screening of more than a hundred human non-small-cell lung cancer cell lines to identify phenotypic variations selectively required for the survival of cells carrying mutations in the
KRAS
gene. They find that KRAS-driven cancers are dependent on the nuclear export machinery. This vulnerability can be exploited by clinically available drugs targeting nuclear export receptor XPO-1, which inhibit tumour growth at least in part by promoting nuclear accumulation of NF-κB inhibitors. Conversely, some KRAS-driven tumours bypass this dependence through co-occurring mutations that result in YAP1 activation. This resistance mechanism can be countered by coadministration of the YAP1/TEAD inhibitor verteporfin.
The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic
KRAS
mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity
1
. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of
KRAS
-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of
KRAS
-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both
in vitro
and
in vivo
. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent
FSTL5
mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of
KRAS
-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.
Journal Article
Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway
by
Si-tong, Li
,
Dai, Qi
,
He-qing, Huang
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Cytokines
2018
Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions, which is widely used for the treatment of various diseases, such as pancreatitis and sepsis. Although the therapeutic effects of UTI are reported to be associated with a variety of mechanisms, the signaling pathways mediating the anti-inflammatory action of UTI remain to be elucidated. In the present study we carried out a systematic study on the anti-inflammatory and anti-oxidative mechanisms of UTI and their relationships in LPS-treated RAW264.7 cells. Pretreatment with UTI (1000 and 5000 U/mL) dose-dependently decreased the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, iNOS) and upregulated anti-inflammatory cytokines (IL-10 and TGF-β1) in LPS-treated RAW264.7 cells. UTI pretreatment significantly inhibited the nuclear translocation of NF-κB by preventing the degradation of IκB-α. UTI pretreatment only markedly inhibited the phosphorylation of JNK at Thr183, but it did not affect the phosphorylation of JNK at Tyr185, ERK-1/2 and p38 MAPK; JNK was found to function upstream of the IκB-α/NF-κB signaling pathway. Furthermore, UTI pretreatment significantly suppressed LPS-induced ROS production by activating PI3K/Akt pathways and the nuclear translocation of Nrf2 via promotion of p62-associated Keap1 degradation. However, JNK was not involved in mediating the anti-oxidative stress effects of UTI. In summary, this study shows that UTI exerts both anti-inflammatory and anti-oxidative effects by targeting the JNK/NF-κB and PI3K/Akt/Nrf2 pathways.
Journal Article