Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,082
result(s) for
"NREM sleep"
Sort by:
Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans
2015
Sleep, specifically non-rapid eye movement (NREM) sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5-1.0 Hz) and thalamic spindles (12-15 Hz), have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem) increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.
Journal Article
Haplotype of the astrocytic water channel AQP4 is associated with slow wave energy regulation in human NREM sleep
by
Holst, Sebastian Camillo
,
Berger, Wolfgang
,
Ulv Larsen, Sara Marie
in
Analysis
,
Aquaporin 4
,
Aquaporin 4 - genetics
2020
Cerebrospinal fluid (CSF) flow through the brain parenchyma is facilitated by the astrocytic water channel aquaporin 4 (AQP4). Homeostatically regulated electroencephalographic (EEG) slow waves are a hallmark of deep non-rapid eye movement (NREM) sleep and have been implicated in the regulation of parenchymal CSF flow and brain clearance. The human AQP4 gene harbors several single nucleotide polymorphisms (SNPs) associated with AQP4 expression, brain-water homeostasis, and neurodegenerative diseases. To date, their role in sleep-wake regulation is unknown. To investigate whether functional variants in AQP4 modulate human sleep, nocturnal EEG recordings and cognitive performance were investigated in 123 healthy participants genotyped for a common eight-SNP AQP4-haplotype. We show that this AQP4-haplotype is associated with distinct modulations of NREM slow wave energy, strongest in early sleep and mirrored by changes in sleepiness and reaction times during extended wakefulness. The study provides the first human evidence for a link between AQP4, deep NREM sleep, and cognitive consequences of prolonged wakefulness.
Journal Article
0128 Muscle injury induces an increase in total and NREM sleep time
2023
Introduction This study describes macro- and micro- sleep responses to a myotoxic skeletal muscle injury and investigates possible mechanisms. Methods We recorded the electroencephalogram(EEG)/electromyogram(EMG) of 24 wistar rats before and after induction of Tibialis Anterior muscle injury (n=8 per group: control, control +buprenorphine and injured). A top-down analysis of sleep characteristics was processed from total sleep time (TST), sleep stages, sleep stability, spectral-analysis, and spindles. To further investigate the mechanisms involved, we analyzed the protein level of sleep regulatory molecules including TNF-α, IL-1β, IGF-1, BMAL1 in plasma, frontal cortex, hippocampus, and tibialis anterior, collected at Day +2 after injury from non-EEG/EMG implanted rats. Results Muscle injury induces a significant increase in total sleep time at 48 and 72h post-injury, specific to NREM sleep. These increases occur during the dark period and are associated with higher stability of sleep over 24h, without change in the different power/frequency spectral bands of NREM/REM sleep. There was no corresponding sleep increase in slow-wave activity or spindle density, nor were there changes in brain levels of the sleep-regulating proinflammatory cytokine IL-1β, which is otherwise involved in the local response to injury. Conversely, decreased protein levels of brain IGF-1 and muscle BMAL1, a core circadian clock gene, after injury may play a role in increased sleep time. Conclusion Muscle injury induces an increase in total sleep time at 48- and 72-hours post-injury, specific to NREM sleep during the dark period in rats and is associated with higher sleep stability over 24 hours. Support (if any)
Journal Article
Local modulation of sleep slow waves depends on timing between auditory stimuli
by
Fattinger, Sara
,
Sousouri, Georgia
,
Leach, Sven
in
Acoustic Stimulation - methods
,
Adult
,
Auditory pathways
2025
•Auditory stimuli were presented at specific phases of slow waves during sleep.•Inter-stimulus interval (ISI) determines global vs. local modulation of slow waves.•Short ISIs in stimulus trains enable local, phase-specific modulation of slow waves.•Long ISIs evoke a global K-complex response irrespective of the targeted phase.•Different EEG responses suggest the engagement of distinct neural circuits.
Conflicting evidence exists regarding the role of the targeted slow-wave phase in determining the direction and spatial specificity of slow-wave activity (SWA) modulation via phase-targeted auditory stimulation (PTAS) during sleep.
To reconcile these discrepancies, we re-analyzed high-density electroencephalography (hd-EEG) data from previous studies, focusing on SWA responses to auditory stimuli presented with varying inter-stimulus intervals (ISIs).
Our analysis reveals that ISI is a primary determinant of PTAS-induced SWA modulation, exceeding the influence of targeted phase alone. Specifically, auditory stimulation with longer ISIs evoked a global increase in SWA, consistent with a stereotypical auditory-evoked K-complex (KC), independent of targeted phase. Conversely, longer stimulus trains with rapid successive stimulus presentation resulted in spatially localized, phase-dependent SWA modulation, with up-PTAS enhancing and down-PTAS reducing SWA locally around the targeted area.
This distinction resolves inconsistencies in prior PTAS studies by demonstrating that phase alone is insufficient in predicting slow-wave responses. Rather, it was the ISI which determined whether PTAS resulted in a global, KC-mediated response or a local, phase-specific modulation of SWA. Consequently, our findings refine the mechanistic understanding of PTAS, suggesting that ISI regulates the engagement of distinct neural circuits and thereby potentially enables the targeted manipulation of specific slow-wave subtypes and their associated functions.
Journal Article
Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice
2011
Hypothalamic neurons expressing neuropeptide orexins are critically involved in the control of sleep and wakefulness. Although the activity of orexin neurons is thought to be influenced by various neuronal input as well as humoral factors, the direct consequences of changes in the activity of these neurons in an intact animal are largely unknown. We therefore examined the effects of orexin neuron-specific pharmacogenetic modulation in vivo by a new method called the Designer Receptors Exclusively Activated by Designer Drugs approach (DREADD). Using this system, we successfully activated and suppressed orexin neurons as measured by Fos staining. EEG and EMG recordings suggested that excitation of orexin neurons significantly increased the amount of time spent in wakefulness and decreased both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep times. Inhibition of orexin neurons decreased wakefulness time and increased NREM sleep time. These findings clearly show that changes in the activity of orexin neurons can alter the behavioral state of animals and also validate this novel approach for manipulating neuronal activity in awake, freely-moving animals.
Journal Article
Induction of narcolepsy-like symptoms by orexin receptor antagonists in mice
2021
Abstract
Orexins/hypocretins are hypothalamic neuropeptides that promote and stabilize wakefulness by binding to the orexin receptor type-1 (OX1R) and type-2 (OX2R). Disruption of orexinergic signaling results in the sleep disorder narcolepsy in mice, rats, dogs, and humans. The orexin receptor antagonist suvorexant promotes sleep by blocking both OX1R and OX2R. Whereas suvorexant has been clinically approved for the treatment of insomnia because it is well tolerated in experimental animals as well as in human patients, a logical question remains as to why orexin receptor antagonists do not induce overt narcolepsy-like symptoms. Here we show that acute and chronic suvorexant promotes both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep without inducing cataplexy in mice. Interestingly, chronic suvorexant increases OX2R mRNA and decreases orexin mRNA and peptide levels, which remain low long after termination of suvorexant administration. When mice are chronically treated with suvorexant and then re-challenged with the antagonist after a 1-week washout, however, cataplexy and sleep-onset REM (SOREM) are observed, which are exacerbated by chocolate administration. Heterozygous orexin knockout mice, with lower brain orexin levels, show cataplexy and SOREM after acute suvorexant administration. Furthermore, we find that acute suvorexant can induce cataplexy and SOREM in wild-type mice when co-administered with chocolate under stress-free (temporally anesthetized) conditions. Taken together, these results suggest that suvorexant can inhibit orexin synthesis resulting in susceptibility to narcolepsy-like symptoms in mice under certain conditions.
Journal Article
Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia
by
Vetrivelan, Ramalingam
,
Bandaru, Sathyajit S.
,
Kroeger, Daniel
in
Animals
,
Arousal
,
Arousal (Physiology)
2019
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting).
Journal Article
Daytime Sleep Enhances Consolidation of the Spatial but Not Motoric Representation of Motor Sequence Memory
2013
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.
Journal Article
The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep
by
Wang, Chen-Yao
,
Qu, Wei-Min
,
Yuan, Xiang-Shan
in
Animals
,
Authorship
,
Biology and Life Sciences
2018
The rostromedial tegmental nucleus (RMTg), also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep-wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM) sleep with increased slow-wave activity (SWA). Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep-wake cycle were mimicked by the modulation of ventral tegmental area (VTA)/substantia nigra compacta (SNc) dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.
Journal Article
OX2R-selective orexin agonism is sufficient to ameliorate cataplexy and sleep/wake fragmentation without inducing drug-seeking behavior in mouse model of narcolepsy
by
Nagumo, Yasuyuki
,
Yamamoto, Hikari
,
Ishikawa, Yukiko
in
Addictive behaviors
,
Agonists
,
Animals
2022
Acquired loss of hypothalamic orexin (hypocretin)-producing neurons causes the chronic sleep disorder narcolepsy-cataplexy. Orexin replacement therapy using orexin receptor agonists is expected as a mechanistic treatment for narcolepsy. Orexins act on two receptor subtypes, OX1R and OX2R, the latter being more strongly implicated in sleep/wake regulation. However, it has been unclear whether the activation of only OX2R, or both OX1R and OX2R, is required to replace the endogenous orexin functions in the brain. In the present study, we examined whether the selective activation of OX2R is sufficient to rescue the phenotype of cataplexy and sleep/wake fragmentation in orexin knockout mice. Intracerebroventricular [Ala 11 , D -Leu 15 ]-orexin-B, a peptidic OX2R-selective agonist, selectively activated OX2R-expressing histaminergic neurons in vivo, whereas intracerebroventricular orexin-A, an OX1R/OX2R non-selective agonist, additionally activated OX1R-positive noradrenergic neurons in vivo. Administration of [Ala 11 , D -Leu 15 ]-orexin-B extended wake time, reduced state transition frequency between wake and NREM sleep, and reduced the number of cataplexy-like episodes, to the same degree as compared with orexin-A. Furthermore, intracerebroventricular orexin-A but not [Ala 11 , D -Leu 15 ]-orexin-B induced drug-seeking behaviors in a dose-dependent manner in wild-type mice, suggesting that OX2R-selective agonism has a lower propensity for reinforcing/drug-seeking effects. Collectively, these findings provide a proof-of-concept for safer mechanistic treatment of narcolepsy-cataplexy through OX2R-selective agonism.
Journal Article