Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,064
result(s) for
"Nanostructured materials Optical properties."
Sort by:
Graphene photonics
Graphene is a single-layer crystal of carbon, the thinnest two-dimensional material. It has unique electronic and photonic properties.
Optical properties and spectroscopy of nanomaterials
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.
Optically Induced Nanostructures
by
Ostendorf Andreas
,
König Karsten
in
Applied physics
,
Biochemical engineering
,
Biochemistry, Biology & Biotechnology
2015
Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.
Nanophotonic structures and materials
by
Andrews, David L.
in
Nanophotonics
,
Nanostructured materials
,
Nanostructured materials -- Optical properties
2015
Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Enhancement in the Structural, Electrical, Optical, and Photocatalytic Properties of La2O3-Doped ZnO Nanostructures
by
Manal AlShadidi
,
Vanga Ganesh
,
Thekrayat H. AlAbdulaal
in
Alternating current
,
Biomedical materials
,
Catalytic activity
2022
A lanthanum oxide (La2O3)-ZnO nanostructured material was synthesized in the proposed study with different La2O3 concentrations, 0.001 g to 5 g (named So to S7), using the combustion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformation infrared spectroscopy (FT-IR) were utilized for investigating the structure, morphology, and spectral studies of the La2O3- ZnO nanomaterials, respectively. The results obtained from previous techniques support ZnO’s growth from crystalline to nanoparticles’ fine structure by changing the concentrations of lanthanum oxide (La2O3) dopants in the host matrix. The percentage of ZnO doped with La- influences the ZnO photocatalytic activity. SEM analysis confirmed the grain size ranged between 81 and 138 nm. Furthermore, UV-Vis diffuse reflectance spectroscopy was performed to verify the effects of La2O3 dopants on the linear optical properties of the nano-composite oxides. There was a variation in the energy bandgaps of La2O3-ZnO nanocomposites, increasing the weight concentrations of lanthanum dopants. The AC electrical conductivity, dielectric properties, and current–voltage properties support the enactment of the electrical characteristics of the ZnO nanoparticles by adding La2O3. All the samples under investigation were used for photodegradation with Rhodamine B (RhB) and Methylene Blue (MB). In less than 30 min of visible light irradiation, S4 (0.5 g) La2O3-ZnO reached 99% of RhB and MB degradation activity. This study showed the best photocatalytic effect for RhB and MB degradation of 0.13 and 0.11 min−1 by 0.5 g La2O3-ZnO. Recycling was performed five times for the nanocatalysts that displayed up to 98 percent catalytic efficiency for RhB and MB degradation in 30 min. The prepared La2O3-ZnO nanostructured composites are considered novel candidates for various applications in biomedical and photocatalytic studies.
Journal Article
Bioinspired structural materials
2015
This Review discusses the common structural motifs of a range of natural materials and the difficulties associated with mimicking these designs in the fabrication of synthetic structures with enhanced mechanical properties.
Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.
Journal Article
Optically resonant dielectric nanostructures
by
Luk'yanchuk, Boris
,
Miroshnichenko, Andrey E.
,
Brongersma, Mark L.
in
Aluminum
,
Dielectric properties
,
Dielectric strength
2016
The resonant modes of plasmonic nanoparticle structures made of gold or silver endow them with an ability to manipulate light at the nanoscale. However, owing to the high light losses caused by metals at optical wavelengths, only a small fraction of plasmonics applications have been realized. Kuznetsov et al. review how high-index dielectric nanoparticles can offer a substitute for these metals, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale. Science , this issue p. 10.1126/science.aag2472 Rapid progress in nanophotonics is driven by the ability of optically resonant nanostructures to enhance near-field effects controlling far-field scattering through intermodal interference. A majority of such effects are usually associated with plasmonic nanostructures. Recently, a new branch of nanophotonics has emerged that seeks to manipulate the strong, optically induced electric and magnetic Mie resonances in dielectric nanoparticles with high refractive index. In the design of optical nanoantennas and metasurfaces, dielectric nanoparticles offer the opportunity for reducing dissipative losses and achieving large resonant enhancement of both electric and magnetic fields. We review this rapidly developing field and demonstrate that the magnetic response of dielectric nanostructures can lead to novel physical effects and applications.
Journal Article
Elastic strain engineering for unprecedented materials properties
by
Li, Ju
,
Shan, Zhiwei
,
Ma, Evan
in
Applied and Technical Physics
,
Characterization and Evaluation of Materials
,
Chemical properties
2014
“Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant fraction of their ideal strength without inelastic relaxation by plasticity or fracture. Large elastic strains, up to ∼10%, can be generated by epitaxy or by external loading on small-volume or bulk-scale nanomaterials and can be spatially homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and chemical properties of a material, such as electronic, optical, magnetic, phononic, and catalytic properties, by varying the six-dimensional elastic strain as continuous variables. By controlling the elastic strain field statically or dynamically, a much larger parameter space opens up for optimizing the functional properties of materials, which gives new meaning to Richard Feynman’s 1959 statement, “there’s plenty of room at the bottom.”
Journal Article
Tuning upconversion through energy migration in core–shell nanoparticles
by
Liu, Xiaogang
,
Deng, Renren
,
Chen, Xueyuan
in
639/301/357/354
,
639/624/1075
,
Activation energy
2011
Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core–shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core–shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.
Nonlinear optical upconversion processes in nanoparticles, which convert long-wavelength light into short-wavelength emission, are promising for applications such as biological imaging, optical data storage and others. The flexible tuning of upconversion properties in core–shell nanoparticles now offers unprecedented control over the nonlinear optical properties of the nanoparticles.
Journal Article