Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
736
result(s) for
"Naphthoquinones - chemistry"
Sort by:
Pharmacokinetics and tolerability of MB12066, a beta-lapachone derivative targeting NAD(P)H:quinone oxidoreductase 1: two independent, double-blind, placebo-controlled, combined single and multiple ascending dose first-in-human clinical trials
2017
MB12066 is a molecule derived from
-lapachone that shown effects on obesity in previous studies. The present studies were conducted to evaluate the tolerability and pharmacokinetics (PK) of MB12066 after the oral administration of single and multiple doses to healthy volunteers. The study comprised 2 independent, randomized, double-blind, placebo-controlled, combined single and multiple ascending dose first-in-human clinical trials to evaluate the safety, tolerability and PK of MB12066 in healthy Korean volunteers. Subjects were randomly assigned to receive a single 10, 30, 100, 150, 200, 300 or 400 mg of MB12066 and multiple 100 or 200 mg of MB12066. The subjects' vital signs, 12-lead electrocardiograms, clinical laboratory tests, adverse event statuses, and physical examinations were assessed during the study. Blood and urine samples were collected to determine the concentration of MB12066 from predose to 72 hours after the single administration and from predose to 96 hours postdose of day 7 after the multiple administration. NADH:quinone oxidoreductase 1 genotyping was performed to analyze the association between genetic polymorphisms and PK. MB12066 was well tolerated after oral administration of single and multiple doses. The systemic exposure to MB12066 after a single administration tended to increase in a dose-dependent manner in the dose range of 30-200 mg. The overall fraction of MB12066 excreted unchanged in urine was <1% of the administered dose. A significant relationship was observed between NADH:quinone oxidoreductase 1 polymorphisms and exposure to MB12066 after multiple administrations, but the result was not conclusive because of the small number of subjects. A single dose of MB12066 within the dose range of 10-400 mg and multiple doses of 100 and 200 mg of MB12066 were safe and tolerated in healthy subjects. Additionally, MB12066 was mainly eliminated through metabolism in humans.
Journal Article
Bioactive Naphthoquinone and Phenazine Analogs from the Endophytic Streptomyces sp. PH9030 as α-Glucosidase Inhibitors
by
Jiang, Ting
,
Huang, Pingzhi
,
Li, Aijie
in
Acids
,
alpha-Glucosidases - chemistry
,
alpha-Glucosidases - metabolism
2024
A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6–12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 μM, as compared with acarbose (IC50 = 671.5 ± 0.2 μM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 μg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.
Journal Article
Synthesis and Antiplasmodial Activity of 1,2,3-Triazole-Naphthoquinone Conjugates
by
Estévez-Braun, Ana
,
López-Rojas, Priscila
,
Flores, Ninoska
in
1,2,3-triazole-naphthoquinones
,
Antifungal agents
,
Antimalarials - chemical synthesis
2019
A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure–activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 μM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.
Journal Article
A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis
by
Miles, Zachary D.
,
Moore, Bradley S.
,
Huang, David M.
in
631/92/60/1163
,
639/638/549/974
,
Analytical Chemistry
2017
Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles. We report the discovery of a hitherto unprecedented enzyme-promoted α-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases to account for these discrepancies in the merochlorin and napyradiomycin class of meroterpenoid antibiotics, and we demonstrate that the α-hydroxyketone rearrangement is potentially a conserved biosynthetic reaction in this molecular class. The biosynthetic α-hydroxyketone rearrangement was applied in a concise total synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes, and sheds further light on the mechanism of this unifying enzymatic transformation.
Bacterial naphthoquinone meroterpenoid natural products defy biosynthetic logic via classical biochemical paradigms. Now, an enzyme promoted α-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases reveals a conserved biosynthetic reaction in this molecular class that further has inspired a concise biomimetic synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes.
Journal Article
Evaluation of Antibacterial and Antibiofilm Properties of Phenolics with Coumarin, Naphthoquinone and Pyranone Moieties Against Foodborne Microorganisms
by
Alejo-Armijo, Alejandra
,
Cobo, Antonio
,
Salido, Sofía
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
antibacterial activity
2025
Numerous studies have previously demonstrated the antimicrobial activity of plant extracts rich in procyanidins. However, these investigations that focused on uncharacterized extracts do not provide information on the structure–activity relationships of these compounds. The aim of this work was to investigate the antibacterial and antibiofilm properties of 27 phenolics with coumarin, naphthoquinone and pyranone moieties against foodborne microorganisms, as well as to establish structure–activity relationships. Minimal inhibitory concentrations (MICs) for each compound were investigated, as well as their ability for inhibiting biofilm formation as well as disrupting previously formed biofilms by food pathogens. Our compounds show high antibacterial and antibiofilm activities against Gram-positive bacteria. Regarding the structure–activity relationships observed, the coumarin moiety seems to favor the antibacterial activity against both S. aureus strains assayed, while a naphthoquinone moiety enhances antibacterial effects against B. cereus. Moreover, the replacement of OH groups in the B-ring by methoxy groups impairs antibacterial activity of the compounds against target bacteria, while the presence of Cl or OH groups in the molecules seems to enhance the inhibition of biofilm formation as well as the disruption of preformed biofilms. These results may be of great relevance for the food sector, increasing the options of additives that can be used industrially.
Journal Article
Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009
2020
Twelve 1, 4-naphthoquinone derivatives, including two new (1 and 2) and 10 known (3–12), were obtained from endophytic fungus Talaromyces sp. SK-S009 isolated from the fruit of Kandelia obovata. All structures were identified through extensive analysis of the nuclear magnetic resonance (NMR), mass spectrometry (MS) and circular dichroism (CD), as well as by comparison with literature data. These compounds significantly inhibited the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in the murine macrophage cell line (RAW 264.7 cells). The half maximal inhibitory concentration (IC50) values, except for compound 2, were lower than that of indomethacin (26.3 μM). Compound 9 inhibited the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expressions in RAW 264.7 macrophages. Additionally, compound 9 reduced the mRNA levels of pro-inflammatory factors interleukin (IL)1β, IL-6, and tumor necrosis factor (TNF)-α. The results of this study demonstrated that these 1, 4-naphthoquinone derivatives can inhibit LPS-induced inflammation.
Journal Article
The Occurrence, Uses, Biosynthetic Pathway, and Biotechnological Production of Plumbagin, a Potent Antitumor Naphthoquinone
by
Thaddi, Bangaru Naidu
,
Nikam, Tukaram Dayaram
,
Kavi Kishor, Polavarapu B.
in
Adsorption
,
anticancer compound
,
Antineoplastic Agents, Phytogenic - biosynthesis
2025
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin synthesis are not completely known, but details of these are being revealed. Several species, including Plumbago, Drosera, and others, are being uprooted for the extraction of plumbagin by pharmaceutical industries, leading to the destruction of natural habitats. The pharmaceutical industry is therefore facing an acute shortage of plant material. This necessitates enhancing the accumulation of plumbagin using suspensions and hairy roots to meet market demands. Many factors, such as the aggregate size of the inoculum, stability of the culture, and the sequential effects of elicitors, immobilization, and permeabilization, have been demonstrated to act synergistically and markedly augment plumbagin accumulation. Hairy root cultures can be used for the large-scale production, growth, and plumbagin accumulation, and the exploration of their efficacy is now imperative. The secretion of compounds into the spent medium and their in situ adsorption via resin has remarkable potential, but this has not been thoroughly exploited. Improvements in the quality of biomass, selection of cell lines, and production of plumbagin in bioreactors have thus far been sporadic, and these parameters need to be further exploited. In this review, we report the advances made relating to the importance of stable cell line selection for the accumulation of compounds in long-term cultures, hairy root cultures for the accumulation of plumbagin, and its semicontinuous production via total cell recycling in different types of bioreactors. Such advances might pave the way for industrial exploitation. The steps in the biosynthetic pathway that are currently understood might also aid us in isolating the relevant genes in order to examine the effects of their overexpression or heterologous downregulation or to edit the genome using CRISPR-Cas9 technology in order to enhance the accumulation of plumbagin. Its potential as an anticancer molecule and its mode of action have been amply demonstrated, but plumbagin has not been exploited in clinics due to its insolubility in water and its highly lipophilic nature. Plumbagin-loaded nanoemulsions, plumbagin–silver, or albumin nanoparticle formulations can overcome these problems relating to its solubility and are currently being tried to improve its bioavailability and antiproliferative activities, as discussed in the current paper.
Journal Article
Dual folate/biotin-decorated liposomes mediated delivery of methylnaphthazarin for anti-cancer activity
2024
Chemotherapy is an effective strategy for mitigating the global challenge of cancer treatment, which often encounters drug resistance and negative side effects. Methylnaphthazarin (MNZ), a natural compound with promising anti-cancer properties, has been underexplored due to its poor aqueous solubility and low selectivity. This study introduces a novel approach to overcome these limitations by developing MNZ-encapsulating liposomes decorated with folate and biotin (F/B-LP-MNZ). This dual-targeting strategy aims to enhance the anti-cancer efficacy and specificity of MNZ delivery. Our innovative F/B-LP-MNZ formulation demonstrated excellent physicochemical properties, stability, and controlled drug release profiles. In vitro studies revealed that MNZ-loaded liposomes attenuate the toxicity associated with free MNZ while F/B-LP-MNZ significantly increased cytotoxicity against HeLa cells, which express high levels of folate and biotin receptors, compared to non-targeted liposomes. Enhanced cellular uptake and improved dynamic flow attachment further confirmed the superior specificity of F/B-LP in targeting cancer cells. Additionally, our results revealed that F/B-LP-MNZ effectively inhibits HeLa cell migration and adhesion through EMT suppression and apoptotic induction, indicating its potential to prevent cancer metastasis. These findings highlight the potential of dual folate and biotin receptors-targeting liposomes as an effective delivery system for MNZ, offering a promising new avenue for targeted cancer therapy.
Journal Article
Exploring the Antibacterial and Antiparasitic Activity of Phenylaminonaphthoquinones—Green Synthesis, Biological Evaluation and Computational Study
by
Lopez-Mercado, Sussan
,
Pino-Rios, Ricardo
,
Enríquez, Cinthya
in
Anti-Bacterial Agents - chemical synthesis
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
2024
Organic compounds with antibacterial and antiparasitic properties are gaining significance for biomedical applications. This study focuses on the solvent-free synthesis (green synthesis) of 1,4-naphthoquinone or 2,3-dichloro-1,4-naphthoquinone with different phenylamines using silica gel as an acid solid support. The study also includes in silico PASS predictions and the discovery of antibacterial and antiparasitic properties of phenylaminonaphthoquinone derivatives 1–12, which can be further applied in drug discovery and development. These activities were discussed in terms of molecular descriptors such as hydrophobicity, molar refractivity, and half-wave potentials. The in vitro antimicrobial potential of the synthesized compounds 1–12 was evaluated against a panel of six bacterial strains (three Gram-positive: Staphylococcus aureus, Proteus mirabilis, and Enterococcus faecalis; and three Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae). Six compounds (1, 3, 5, 7, 10, and 11) showed better activity toward S. aureus with MIC values between 3.2 and 5.7 μg/mL compared to cefazolin (MIC = 4.2 μg/mL) and cefotaxime (MIC = 8.9 μg/mL), two cephalosporin antibiotics. Regarding in vitro antiplasmodial activity, compounds 1 and 3 were the most active against the Plasmodium falciparum strain 3D7 (chloroquine-sensitive), displaying IC50 values of 0.16 and 0.0049 μg/mL, respectively, compared to chloroquine (0.33 μg/mL). In strain FCR-3 (chloroquine-resistant), most of the compounds showed good activity, with compounds 3 (0.12 μg/mL) and 11 (0.55 μg/mL) being particularly noteworthy. Additionally, docking studies were used to better rationalize the action and prediction of the binding modes of these compounds. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed.
Journal Article
Synthesis of Spirooxindole-O-Naphthoquinone-Tetrazolo1,5-aPyrimidine Hybrids as Potential Anticancer Agents
by
Liu, Yunxia
,
Wu, Liqiang
,
Li, Yazhen
in
Antimitotic agents
,
Antineoplastic agents
,
Antineoplastic Agents - chemical synthesis
2018
A series of novel spirooxindole-O-naphthoquinone-tetrazolo[1,5-a]pyrimidine hybrids were designed, synthesized and evaluated as potent antitumor agents. These hybrids exhibited relatively high cytotoxic activity against cancer cell line HepG2 (IC50 = 2.86–36.34 μM), while normal cell line LO2 was less sensitive to these hybrids (IC50 = 36.37–248.39 μM). On the whole, among all the compounds tested, compound 4e, with a mean IC50 value of 2.86 μM, was the most active. The novel hybrids may find their pharmaceutical applications after further investigations.
Journal Article