Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,731 result(s) for "Natural channels"
Sort by:
River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation
River restoration is an increasingly common approach utilized to reverse past degradation of freshwater ecosystems and to mitigate the anticipated damage to freshwaters from future development and resource-extraction activities. While the practice of river restoration has grown exponentially over the last several decades, there has been little empirical evaluation of whether restoration projects individually or cumulatively achieve the legally mandated goals of improving the structure and function of streams and rivers. New efforts to evaluate river restoration projects that use channel reconfiguration as a methodology for improving stream ecosystem structure and function are finding little evidence for measurable ecological improvement. While designed channels may have less-incised banks and greater sinuousity than the degraded streams they replace, these reach-scale efforts do not appear to be effectively mitigating the physical, hydrological, or chemical alterations that are responsible for the loss of sensitive taxa and the declines in water quality that typically motivate restoration efforts. Here we briefly summarize this new literature, including the collection of papers within this Invited Feature, and provide our perspective on the limitations of current restoration.
Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers
Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders.
Carbon dynamics of river corridors and the effects of human alterations
Research in stream metabolism, gas exchange, and sediment dynamics indicates that rivers are an active component of the global carbon cycle and that river form and process can influence partitioning of terrestrially derived carbon among the atmosphere, geosphere, and ocean. Here we develop a conceptual model of carbon dynamics (inputs, outputs, and storage of organic carbon) within a river corridor, which includes the active channel and the riparian zone. The exchange of carbon from the channel to the riparian zone represents potential for storage of transported carbon not included in the \"active pipe\" model of organic carbon (OC) dynamics in freshwater systems. The active pipe model recognizes that river processes influence carbon dynamics, but focuses on Co₂ emissions from the channel and eventual delivery to the ocean. We also review how human activities directly and indirectly alter carbon dynamics within river corridors. We propose that dams create the most significant alteration of carbon dynamics within a channel, but that alteration of riparian zones, including the reduction of lateral connectivity between the channel and riparian zone, constitutes the most substantial change of carbon dynamics in river corridors. We argue that the morphology and processes of a river corridor regulate the ability to store, transform, and transport OC, and that people are pervasive modifiers of river morphology and processes. The net effect of most human activities, with the notable exception of reservoir construction, appears to be that of reducing the ability of river corridors to store OC within biota and sediment, which effectively converts river corridors to OC sources rather than OC sinks. We conclude by summarizing knowledge gaps in OC dynamics and the implications of our findings for managing OC dynamics within river corridors.
Process-Based Principles for Restoring River Ecosystems
Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat dynamics; and riparian and aquatic biota. We outline and illustrate four process-based principles that ensure river restoration will be guided toward sustainable actions: (1) restoration actions should address the root causes of degradation, (2) actions must be consistent with the physical and biological potential of the site, (3) actions should be at a scale commensurate with environmental problems, and (4) actions should have clearly articulated expected outcomes for ecosystem dynamics. Applying these principles will help avoid common pitfalls in river restoration, such as creating habitat types that are outside of a site's natural potential, attempting to build static habitats in dynamic environments, or constructing habitat features that are ultimately overwhelmed by unconsidered system drivers.
Socio-economic Impacts on Flooding: A 4000-Year History of the Yellow River, China
We analyze 4000-year flood history of the lower Yellow River and the history of agricultural development in the middle river by investigating historical writings and quantitative time series data of environmental changes in the river basin. Flood dynamics are characterized by positive feedback loops, critical thresholds of natural processes, and abrupt transitions caused by socio-economic factors. Technological and organizational innovations were dominant driving forces of the flood history. The popularization of iron plows and embankment of the lower river in the 4th century BC initiated a positive feedback loop on levee breaches. The strength of the feedback loop was enhanced by farming of coarse-sediment producing areas, steep hillslope cultivation, and a new river management paradigm, and finally pushed the flood frequency to its climax in the seventeenth century. The co-evolution of river dynamics and Chinese society is remarkable, especially farming and soil erosion in the middle river, and central authority and river management in the lower river.
Dreams of Natural Streams
Human influences have fundamentally changed river morphologies in temperate regions around the world.
Generic theory for channel sinuosity
Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as “inherited” from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.
The Role of Abandoned Channels as Refugia for Sustaining Pioneer Riparian Forest Ecosystems
In disturbance-prone ecosystems, organisms often persist in spatial refugia during stressful periods. A clear example is the colonization of abandoned river channels by pioneer riparian trees. Here, we examine the prominence of this establishment pathway for a foundation tree species (Fremont cottonwood, Populus fremontii) within the riparian corridor of a large river, the Sacramento River in central California. We quantified the total proportion of forest that initiated as a result of channel abandonment for a 160-km reach, analyzed concurrent patterns of tree establishment with floodplain accretion and sedimentation history, and developed a conceptual model of biogeomorphic evolution of abandoned channels. Historical air photo analysis indicated that stands associated with abandoned channels comprised more than 50% of the total extant cottonwood forest area. Tree-ring evidence showed that cottonwood stands commonly developed immediately following abandonment, and the recruitment window ranged from 4 to 40 years, but was less than 10 years at most sites. Rates of floodplain rise and fine sediment accumulation were high in young sites and decreased logarithmically over time. Together, these results suggest that abandoned channels are an important refuge for cottonwood recruitment, that the greatest opportunity for colonization occurs within a short period after the cutoff event, and that sedimentation processes influence the duration of the colonization window. On rivers where tree recruitment along the active channel is severely limited by hydrologic regulation and/or land management, abandoned channel refugia may play an even more important role in sustaining an ecologically functional riparian corridor. Preserving bank erosion, active meander corridors and forest regeneration zones created by cutoff events are therefore key conservation measures on shifting rivers.
The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats
Hierarchical and branching river networks interact with dynamic watershed disturbances, such as fires, storms, and floods, to impose a spatial and temporal organization on the nonuniform distribution of riverine habitats, with consequences for biological diversity and productivity. Abrupt changes in water and sediment flux occur at channel confluences in river networks and trigger changes in channel and floodplain morphology. This observation, when taken in the context of a river network as a population of channels and their confluences, allows the development of testable predictions about how basin size, basin shape, drainage density, and network geometry interact to regulate the spatial distribution of physical diversity in channel and riparian attributes throughout a river basin. The spatial structure of river networks also regulates how stochastic watershed disturbances influence the morphology and ages of fluvial features found at confluences.
Evaluating Global Streamflow Simulations by a Physically Based Routing Model Coupled with the Community Land Model
Accurately simulating hydrological processes such as streamflow is important in land surface modeling because they can influence other land surface processes, such as carbon cycle dynamics, through various interaction pathways. This study aims to evaluate the global application of a recently developed Model for Scale Adaptive River Transport (MOSART)coupled with the Community Land Model, version 4 (CLM4). To support the global implementation of MOSART, a comprehensive global hydrography dataset has been derived at multiple resolutions from different sources. The simulated runoff fields are first evaluated against the composite runoff map from the Global Runoff Data Centre (GRDC). The simulated streamflow is then shown to reproduce reasonably well the observed daily andmonthly streamflow at over 1600 of the world’s major river stations in terms of annual, seasonal, and daily flow statistics. The impacts of model structure complexity are evaluated, and results show that the spatial and temporal variability of river velocity simulated by MOSART is necessary for capturing streamflow seasonality and annual maximum flood. Other sources of the simulation bias include uncertainties in the atmospheric forcing, as revealed by simulations driven by four different climate datasets, and human influences, based on a classification framework that quantifies the impact levels of large dams on the streamflow worldwide.