Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
84
result(s) for
"Negaprion brevirostris"
Sort by:
Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data
2018
Discerning behaviours of free-ranging animals allows for quantification of their activity budget, providing important insight into ecology. Over recent years, accelerometers have been used to unveil the cryptic lives of animals. The increased ability of accelerometers to store large quantities of high resolution data has prompted a need for automated behavioural classification. We assessed the performance of several machine learning (ML) classifiers to discern five behaviours performed by accelerometer-equipped juvenile lemon sharks (Negaprion brevirostris) at Bimini, Bahamas (25°44′N, 79°16′W). The sharks were observed to exhibit chafing, burst swimming, headshaking, resting and swimming in a semi-captive environment and these observations were used to ground-truth data for ML training and testing. ML methods included logistic regression, an artificial neural network, two random forest models, a gradient boosting model and a voting ensemble (VE) model, which combined the predictions of all other (base) models to improve classifier performance. The macro-averaged F-measure, an indicator of classifier performance, showed that the VE model improved overall classification (F-measure 0.88) above the strongest base learner model, gradient boosting (0.86). To test whether the VE model provided biologically meaningful results when applied to accelerometer data obtained from wild sharks, we investigated headshaking behaviour, as a proxy for prey capture, in relation to the variables: time of day, tidal phase and season. All variables were significant in predicting prey capture, with predations most likely to occur during early evening and less frequently during the dry season and high tides. These findings support previous hypotheses from sporadic visual observations.
Journal Article
Predictable temperature-regulated residency, movement and migration in a large, highly mobile marine predator (Negaprion brevirostris)
2014
Understanding how and why animals are distributed through time and space has always been a fundamental component of ecology and is an essential prerequisite for effective conservation and/or management. However, for highly mobile K-selected species, behavioural predictability is rarely considered over appropriate scales relative to life history. To address this point, a multidisciplinary approach combining telemetry, external tagging, physical assessment, environmental monitoring and genetic analysis was adopted to determine a spatial framework for the movements of adult lemon sharks Negaprion brevirostris at multiple spatial and temporal scales from 2007 to 2011. Lemon sharks (n = 83) were tracked with passive acoustic telemetry, revealing a winter residency in the southeast Florida region. Detections from individuals recorded within the core winter habitat for >20 d (n = 56) were incorporated into generalized linear mixed-effects models to investigate the influence of water temperature, photoperiod, moon phase, month and year on presence. The findings of this study suggest a temperature driven ‘migration-residency’ model for mature lemon shark distribution across the USA eastern seaboard. Lemon sharks are distributed across a wide geographical area in the summer months and migrate south concentrating off southeast Florida in the winter, with this pattern repeated each year. From comparative genetic analysis and the absence of any evidence of mating behaviour during the winter residency period, mating and parturition most probably occur in May/June between northern Florida and the Carolinas. This study highlights the importance of determining the specific dynamics and proximate causes of animal movement and distribution over appropriate spatial and temporal scales relative to life history.
Journal Article
Between-Habitat Variation of Benthic Cover, Reef Fish Assemblage and Feeding Pressure on the Benthos at the Only Atoll in South Atlantic: Rocas Atoll, NE Brazil
2015
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most \"pristine\" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact.
Journal Article
Local population structure and context-dependent isolation by distance in a large coastal shark
2015
Genetic diversity, population genetic structure and isolation by distance (IBD) were assessed in a viviparous coastal shark (the lemon shark Negaprion brevirostris) across 8 western Atlantic samples spaced between ~150 and 7000 km apart. Juveniles (N = 325) were sequenced at 2 mitochondrial loci (1729 bp) and typed at 9 nuclear encoded microsatellite loci. Analysis of mitochondrial sequences revealed higher diversity at low-latitude island samples compared to high-latitude continental samples, consistent with an equatorial center-of-origin for this species. There were 5 distinct groups across our sampling areas (Brazil, Louisiana, Cape Canaveral, Gullivan Bay and the Florida Keys/Bahamas/Virgin Islands; pairwise ΦST = 0.07–0.87) and all but one pair of the 8 samples also exhibited significantly different haplotype frequencies (pairwise F
ST = 0.10–0.51). Bayesian analysis indicated that the Brazil and Louisiana samples were generally isolated from the others, but most of the rest were diverged although still connected or recently connected by migration. In contrast, structure was only detected between the most distant sample (Brazil) and all of the others using the microsatellite markers (pairwise F
ST = 0.03–0.06). There was a significant pattern of IBD for all markers and measures of genetic differentiation (r² = 0.65–0.81, p < 0.05–0.01), but not after removing the Brazil sample. There was evidence that glacial and post-glacial historical processes and sex-specific differences in philopatry affected IBD. Because of the relatively fine-scale population structure of this and other large coastal shark species more attention should be paid to local processes in the conservation and fisheries management of these species.
Journal Article
Deep danger: intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris
2012
Non-consumptive or risk effects imposed by predators can influence prey behaviour over different spatio-temporal scales. Prey vulnerability to predation can also be dependent on abiotic conditions, such as tidal height. We conducted direct field observations of juvenile lemon sharks Negaprion brevirostris in a tidally influenced mangrove-inlet. We also used acoustic tracking to determine the movement patterns of juvenile lemon sharks and their predators (sub-adult lemon sharks) across the tidal cycle. Results showed that greater numbers of juvenile lemon sharks used the mangrove-inlet for longer time periods at deeper and warmer high tide depths. This coincided with an increased presence of potential predators (sub-adult lemon sharks) in the surrounding areas. Furthermore, in accordance with body-size dependent anti-predatory investment, smaller juvenile lemon sharks visited the mangrove inlet more often, spent longer there and left latest on average. Our acoustic tracking data also revealed a tidally-influenced pattern, with both juvenile and sub-adult lemon sharks detected at locations inshore over the high tide and offshore during the low tide. We concluded that the mangrove lake served as a 'refuge' for juvenile lemon sharks over the high tide, providing safe habitat when inshore areas become accessible to large predators, such as sub-adult lemon sharks. We suggest that these decisions are updated through ontogeny and also with daily fluctuations in abiotic factors, such as water depth. This study provides evidence for how intra-specific predator-prey interactions in a top predator species influence juvenile habitat selection, with potential implications for population structure and regulation.
Journal Article
Genetic structure and relatedness of juvenile sicklefin lemon shark (Negaprion acutidens) at Dongsha Island
by
Chi Cheng
,
Shang Yin Vanson Liu
,
Yu-Yun Chen
in
631/158/2452
,
631/181/457
,
Acoustic telemetry
2023
Negaprion acutidens
(sicklefin lemon shark) is distributed in the Indo-Pacific and in close association with coral reefs. Under the protection of the Dongsha Atoll National Park, a small but well-established juvenile population of
N. acutidens
inhabiting coastal areas of Dongsha Island was recently observed to display site fidelity by using acoustic telemetry. This study was designed to reveal the fine scale genetic structure and relatedness within and among 5 juvenile shark cohorts inhabiting 3 sampling sites at Dongsha Island. A total 188 juveniles were caught and sampled between 2016 and 2017, and genotyped with twelve loci. They were assigned to 5 year cohorts (2013–2017) based on the body length and date they were caught, also assigned to 3 sites based on where they were caught. Among five cohorts, the percentage of unrelated pairs within a cohort is more than 62% in average, suggesting a potential high mortality during their early life stage. The results of Fst and assignment testing showed that there was no significant genetic structure between sites and cohorts indicating that there was no fine scale genetic structure, even though the juveniles possessed strong site fidelity. A small effective population size (Ne) was detected (Ne = 86.7) which indicates the presence of a potentially isolated and vulnerable population at Dongsha. These results provide the genetic diversity as a baseline for future management and conservation of
N. acutidens
in the South China Sea.
Journal Article
Network analysis reveals multispecies spatial associations in the shark community of a Caribbean marine protected area
by
Hillis-Starr, Zandy
,
Danylchuk, Andy J.
,
DeAngelis, Bryan M.
in
Acoustic telemetry
,
Algorithms
,
Arrays
2020
Many shark species exhibit complex spatial ecology throughout their life histories, posing a challenge for conservation and management. Although most marine protected areas (MPAs) were originally established to protect less mobile organisms, protection of shark species from fishing and other impacts is possible if individuals exhibit high residency and site fidelity within the MPA boundaries. For this study, we used a fixed acoustic telemetry array to study the residency, habitat use, and interspecific space use among 4 shark species in Buck Island Reef National Monument (BIRNM), an MPA in St. Croix, US Virgin Islands. From June 2013 to May 2017, 11 nurse sharks Ginglymostoma cirratum, 6 lemon sharks Negaprion brevirostris, 13 Caribbean reef sharks Carcharhinus perezi, and 6 tiger sharks Galeocerdo cuvier were monitored in the array. Overall, residency was high for all species, with a mean residency index of 0.52 or higher for each species. Network analysis revealed complex inter- and intraspecific spatial associations among individuals. Community detection algorithms showed that G. cirratum and N. brevirostris frequently used the same areas in BIRNM, selecting for shallow sand and seagrass habitats near linear reefs, while G. cuvier and C. perezi had more individualized space use. C. perezi also exhibited ontogenetic shifts, developing individual territories and using deeper water with increasing body size. This work emphasizes the importance of MPA size, placement, and habitat composition when aiming to protect highly mobile species with potentially large home ranges and shifting space use throughout their life histories.
Journal Article
Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site
by
Barnett, Adam
,
Brunnschweiler, Juerg M.
,
Abrantes, Kátya G.
in
Animal behavior
,
Animals
,
Baiting
2014
Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species.
Journal Article
Age group DNA methylation differences in lemon sharks (Negaprion brevirostris): Implications for future age estimation tools
by
Feldheim, Kevin
,
Gruber, Samuel H.
,
Beal, Andria Paige
in
Age determination
,
age estimation
,
Age groups
2022
Age information is often non‐existent for most shark populations due to a lack of measurable physiological and morphological traits that can be used to estimate age. Recently, epigenetic clocks have been found to accurately estimate age for mammals, birds, and fish. However, since these clocks rely, among other things, on the availability of reference genomes, their application is hampered in non‐traditional model organisms lacking such molecular resources. The technique known as Methyl‐Sensitive Amplified Polymorphism (MSAP) has emerged as a valid alternative for studying DNA methylation biomarkers when reference genome information is missing, and large numbers of samples need to be processed. Accordingly, the MSAP technique was used in the present study to characterize global DNA methylation patterns in lemon sharks from three different age groups (juveniles, subadults, and adults). The obtained results reveal that, while MSAP analyses lack enough resolution as a standalone approach to infer age in these organisms, the global DNA methylation patterns observed using this technique displayed significant differences between age groups. Overall, these results confer that DNA methylation does change with age in sharks like what has been seen for other vertebrates and that MSAP could be useful as part of an epigenetics pipeline to infer the broad range of ages found in large samples sizes.
Epigenetic clocks have been found to accurately estimate age for several species, however, these clocks rely heavily on the availability of reference genomes. This study explores the potential for using MSAP as an alternative to higher throughput methods for the analysis of age in sharks. Our results indicate that MSAP could be useful as part of an epigenetics pipeline to infer broad age ranges.
Journal Article
Are some sharks more social than others? Short- and long-term consistencies in the social behavior of juvenile lemon sharks
by
Wilson, A. D. M.
,
Guttridge, T. L.
,
Krause, J.
in
Animal behavior
,
Animal Ecology
,
Animal populations
2018
Despite substantial research interest in understanding individual-level consistency in behavioral attributes, significant knowledge gaps remain across traits and taxa. For example, relatively few studies have looked at social personality in large marine species such as elasmobranchs and whether or not individual differences in behavior are maintained in unstable social groups (i.e., fission-fusion dynamics). However, it is important to investigate this topic in other model species than the usually small species with short generation times typically investigated in these areas of behavioral ecology. Indeed, studies on ecologically diverse taxa could provide mechanistic insights into the emergence and maintenance of animal personality and dynamics of social groups in animals. In addition, understanding social behavior at the group- and individual-level could improve conservation management of these large animals with long generation times (e.g., removal of particular behavioral types by fisheries practices). Here, we investigated consistent individual differences in sociability in wild juvenile lemon sharks (Negaprion brevirostris) over both short- (4 to 18 days) and long-term (4 months) sampling periods. Individual sharks were observed in social groups and scored according to the number of social interactions performed during observations. Despite variable individual group compositions between repeated trials, sharks showed consistent individual differences in their social behavior over both time scales. These results suggest reduced plasticity and highlight individuality as an important explanatory variable for the social dynamics of juvenile lemon sharks. In addition, long-term stability observed in this wild population demonstrates the importance of personality in the daily behavioral repertoire of juvenile lemon sharks. Our results are discussed in the context of other shark studies and taxonomic groups and potential avenues for future research are proposed.
Journal Article