Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Neocortex - abnormalities"
Sort by:
Synaptic Dysregulation Drives Hyperexcitability in Pyramidal Neurons Surrounding Freeze-Induced Neocortical Malformations in Rats
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy; however, the mechanisms underlying hyperexcitability in the affected cortical regions remain poorly understood. In this study, we employed a freeze-induced neocortical malformation model in rats to investigate the electrophysiological properties of pyramidal neurons surrounding the microgyrus and to evaluate changes in synaptic transmission. Using whole-cell patch-clamp recordings, we analyzed passive and active membrane properties, synaptic responses, and epileptiform activity in brain slices from rats with FCD and sham-operated controls. Our results revealed that while the intrinsic biophysical properties of neurons remained largely unchanged, the summation of excitatory and inhibitory inputs was significantly enhanced. Notably, the balance of inhibitory and excitatory synaptic currents was shifted toward excitation, making the perilesional cortex more susceptible to seizure generation. In a model of epileptiform activity induced by GABAA receptor blockade and reduced Mg2+ concentration, we observed early ictal activity originating in the microgyrus and spreading to adjacent regions. These findings demonstrate that synaptic perturbations, rather than alterations in intrinsic neuronal properties, are the primary drivers of hyperexcitability in this model. Our study highlights the importance of synaptic dysregulation in FCD-related epilepsy and suggests that targeting synaptic transmission may offer a promising therapeutic strategy for controlling seizures in patients with cortical malformations.
A kinase-independent function of cyclin-dependent kinase 6 promotes outer radial glia expansion and neocortical folding
The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.
Layer-Specific Markers as Probes for Neuron Type Identity in Human Neocortex and Malformations of Cortical Development
Malformations of cortical development (MCDs) are heterogeneous disorders caused by abnormalities of cell proliferation, apoptosis, cell migration, cortical organization, and axon pathfinding. In severe MCDs, the cerebral cortex can appear completely disorganized, or may be replaced by aberrant laminar patterns, as in \"4-layered\" types of lissencephaly and polymicrogyria. Little is known about the abnormal layers in MCDs and whether they bear any relation to normal cortical layers or how MCDs affect specific neuron types. Normally, each layer contains a defined mixture of different types of pyramidal and nonpyramidal neurons. The neuron types are distinguished by molecular expression as well as morphologic, neurochemical, and electrophysiologic criteria. Patterns of layer-specific mRNA and protein expression reflect the segregation of different neuron types into different layers (e.g. corticospinal projection neurons in layer V). Numerous layer-specific markers have been described in rodent cortex, and increasing numbers are being documented in human and monkey cortex. Applied to MCDs, layer-specific markers have the potential to reveal new insights on pathogenesis, treatment possibilities, and genotype-phenotype correlations. However, much work remains before layer-specific markers become practical tools in diagnostic neuropathology. Additional markers, more extensive documentation of normal expression, and better antibodies compatible with paraffin-embedded tissues will be necessary.
Neuronal position in the developing brain is regulated by mouse disabled-1
During mammalian brain development, immature neurons migrate radially from the neuroectoderm to defined locations, giving rise to characteristic cell layers 1 , 2 . Here we show that targeted disruption of the mouse disabled1 ( mdab1 ) gene 3 disturbs neuronal layering in the cerebral cortex, hippocampus and cerebellum. The gene encodes a cytoplasmic protein, mDab1 p80, which is expressed and tyrosine-phosphorylated in the developing nervous system 3 . It is likely to be an adaptor protein, docking to others through its phosphotyrosine residues and protein-interacting domain 4 . The mdab1 mutant phenotype is very similar to that of the reeler mouse 5 , 6 , 7 . The product of the reeler gene, Reelin, is a secreted protein that has been proposed to act as an extracellular signpost for migrating neurons 8 , 9 , 10 . Because mDab1 is expressed in wild-type cortical neurons, and Reelin expression is normal in mdab1 mutants, mDab1 may be part of a Reelin-regulated or parallel pathway that controls the final positioning of neurons.
Neuropathological spectrum of cortical dysplasia in children with severe focal epilepsies
Cortical dysplasias comprise a variable spectrum of clinical, neuroradiological and histopathological findings. We report about a cohort of 25 pediatric patients (mean age 8.1+/-4.8 years) with severe drug-resistant early onset focal epilepsies (mean duration 2.1+/-0.4 years), mental/psychomotor retardation, and multilobar epileptogenesis. Compared to age-matched biopsy controls, microscopical inspection of neurosurgically resected specimens revealed dysplastic neurons with/without balloon cells in only 7 patients. According to Palmini's classification system, these lesions were categorized as focal cortical dysplasia (FCD) type II. All other patients presented with rather subtle but statistically significant neuroanatomical abnormalities. We identified increased numbers of ectopic neurons in white matter and cortical gliosis. However, most intriguing was our finding of a microcolumnar arrangement of cortical neurons in layer III. These microcolumns can be statistically defined as vertical lining of more than eight neurons (two times standard deviation of cell countings obtained from controls). In addition, neuronal perikarya were significantly smaller in epilepsy patients. Although histological abnormalities occurring during postnatal maturation of the brain challenge any neuropathological classification in this group of young patients, we propose that these findings are classified according to FCD type I. Our observations support a concept compatible with regional loss of high-order brain organization.
Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone
Doc number: 25 Abstract Background: The secreted ligand Reelin is believed to regulate the translocation of prospective layer 6 (L6) neocortical neurons into the preplate, a loose layer of pioneer neurons that overlies the ventricular zone. Recent studies have also suggested that Reelin controls neuronal orientation and polarized dendritic growth during this period of early cortical development. To explicitly characterize and quantify how Reelin controls this critical aspect of neurite initiation and growth we used a new ex utero explant model of early cortical development to selectively label a subset of L6 cortical neurons for complete 3-D reconstruction. Results: The total neurite arbor sizes of neurons in Reelin-deficient (reeler mutant) and Dab1-deficient (Reelin-non-responsive scrambler mutant) cortices were quantified and unexpectedly were not different than control arbor lengths (p = 0.51). For each mutant, however, arbor organization was markedly different: mutant neurons manifested more primary processes (neurites emitted directly from the soma) than wild type, and these neurites were longer and displayed less branching. Reeler and scrambler mutant neurites extended tangentially rather than radially, and the Golgi apparatus that normally invests the apical neurite was compact in both reeler and scrambler mutants. Mutant cortices also exhibited a neurite \"exclusion zone\" which was relatively devoid of L6 neuron neurites and extended at least 15 μm beneath the pial surface, an area corresponding to the marginal zone (MZ) in the wild type explants. The presence of an exclusion zone was also indicated in the orientation of mutant primary neurite and neuronal somata, which failed to adopt angles within ~20 of the radial line to the pial surface. Injection of recombinant Reelin to reeler, but not scrambler , mutant cortices fully rescued soma orientation, Golgi organization, and dendritic projection defects within four hrs. Conclusions: These findings indicate Reelin promotes directional dendritic growth into the MZ, an otherwise exclusionary zone for L6 neurites.
Imaging the neocortex in epilepsy with double inversion recovery imaging
The neocortices of 10 patients with partial seizures and acquired lesions, 14 patients with malformations of cortical development (MCD) and 33 patients with partial seizures and normal conventional MRI were quantitatively evaluated using whole brain double inversion recovery imaging (DIR) and Statistical Parametric Mapping (SPM). Compared to a group of 30 control subjects, DIR and objective voxel-by-voxel statistical comparison identified regions of significantly abnormal DIR signal intensity (DSI) in 9 out of 10 patients with acquired nonprogressive cerebral lesions and partial seizures. In all 9 patients, the areas of abnormal DSI concurred with abnormalities identified on visual inspection of conventional MRI. In all 14 patients with MCD, SPM detected regions of significantly abnormal DSI; all of which corresponded to abnormalities identified on visual inspection of conventional MRI. In addition, in both groups, there were areas that were normal on conventional imaging, which demonstrated abnormal DSI. Voxel-by-voxel statistical analysis identified significantly abnormal DSI in 15 of the 33 patients with cryptogenic focal epilepsy. In 10 of these, the areas of abnormal DSI concurred with epileptic EEG abnormality and clinical seizure semiology. Group analysis of MRI-negative patients with electroclinical seizure onset localising to the left temporal and left and right frontal regions revealed significantly abnormal DSI within the white matter of each respective lobe. DIR analysed using SPM was sensitive in patients with MCDs and acquired cerebral damage. Significant abnormalities in DSI in individual and grouped MRI-negative patients suggest that occult epileptogenic cerebral lesions are associated with subtle structural abnormalities. DIR is, therefore, a useful quantitative MRI technique for characterising epileptic foci and may contribute to presurgical evaluation.
Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: an objective voxel by voxel analysis of automatically segmented MRI
BACKGROUND Interictal episodes of aggression are often reported in patients with epilepsy. Some have characteristics of what has been referred to as episodic dyscontrol or intermittent explosive disorder (IED). Although structural brain abnormalities are thought to play a part in the pathophysiology of aggression, there are few in vivo studies of structural cerebral changes in patients with epilepsy and aggression. Using quantitative MRI, subtle structural brain abnormalities can be investigated in subgroups of patients with both epilepsy and episodes of affective aggression. METHODS After automated segmentation of cerebral grey matter from T1 weighted MRI, the objective technique of statistical parametric mapping (SPM) was applied to the analysis of 35 control subjects, 24 patients with temporal lobe epilepsy (TLE) with a history of repeated, interictal episodes of aggression, and 24 patients with TLE without episodes of aggression. Both TLE patient groups were compared with each other and with the control subjects on a voxel by voxel basis for increases and decreases of grey matter. RESULTS The patients with TLE with aggressive episodes had a decrease of grey matter, most markedly in the left frontal lobe, compared with the control group and with patients with TLE without aggressive episodes. CONCLUSION These findings suggest that a reduction of frontal neocortical grey matter might underly the pathophysiology of aggression in TLE. These voxel by voxel comparisons can guide further in vivo studies into aggression.
Neuronal Migration Disorders: Heterotopic Neocortical Neurons in CA1 Provide a Bridge between the Hippocampus and the Neocortex
Neuronal migration disorders have been involved in various pathologies, including epilepsy, but the properties of the neural networks underlying disorders have not been determined. In the present study, patch clamp recordings were made from intrahippocampal heterotopic as well as from neocortical and hippocampal neurons from brain slices of rats with prenatally methylazoxymethanol-induced cortical malformation. We report that heterotopic neurons have morphometrical parameters and cellular properties of neocortical supragranular neurons and are integrated in both neocortical and hippocampal networks. Thus, stimulation of the white matter induces both antidromic and orthodromic response in heterotopic and neocortical neurons. Stimulation of hippocampal afferents evokes a monosynaptic response in the majority of heterotopic neurons and a polysynaptic all-or-none epileptiform burst in the presence of bicuculline to block γ -aminobutyric acid type A inhibition. Furthermore, hippocampal paroxysmal activity generated by bath application of bicuculline can spread directly to the neocortex via the heterotopia in methylazoxymethanol-treated but not in naive rats. We conclude that heterotopias form a functional bridge between the limbic system and the neocortex, providing a substrate for pathological conditions.
Neocortical neuronal arrangement in Miller Dieker syndrome
Miller Dieker syndrome (MDS, type I lissencephaly) is a neuronal migration disorder, which is caused by deletions along the short arm of chromosome 17 (17p13.3). Recent studies would suggest that the cortical lamination in MDS is inverted, based on morphological criteria. The present neuropathological study examines the cerebral cortex from a 33-week old fetus with MDS using both neuronal and laminar-specific markers. These expression studies demonstrate a relatively preserved cortex and cortical lamination, overlying a layer of immature neurons in MDS brain. The findings are consistent with both a migratory and proliferative defect, giving rise to lissencephaly. Moreover, characterization of such rare human malformations of cortical development by immunohistochemical techniques will provide a greater understanding of the underlying mechanisms.