Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
179,513
result(s) for
"Nervous system diseases"
Sort by:
Post-acute neurological consequences of COVID-19: an unequal burden
by
Nolen, LaShyra T.
,
Mejia, Nicte I.
,
Mukerji, Shibani S.
in
631/326/1762
,
692/617/375
,
692/700/1538
2022
COVID-19 and its neurological consequences particularly burden marginalized communities, and so can only be effectively treated by advancing health equity.
Journal Article
B cells in autoimmune and neurodegenerative central nervous system diseases
by
Sabatino, Joseph J
,
Zamvil, Scott S
,
Pröbstel, Anne-Katrin
in
Alzheimer's disease
,
Antigen presentation
,
Autoantibodies
2019
B cells are essential components of the adaptive immune system and have important roles in the pathogenesis of several central nervous system (CNS) diseases. Besides producing antibodies, B cells perform other functions, including antigen presentation to T cells, production of proinflammatory cytokines and secretion of anti-inflammatory cytokines that limit immune responses. B cells can contribute to CNS disease either through their actions in the periphery (meaning that they have an ‘outside-in’ effect on CNS immunopathology) or following their compartmentalization within the CNS. The success of B cell-depleting therapy in patients with multiple sclerosis and CNS diseases with an autoantibody component, such as neuromyelitis optica spectrum disorder and autoimmune encephalitides, has underscored the role of B cells in both cellular and humoral-mediated CNS conditions. Emerging evidence suggests B cells also contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer disease and Parkinson disease. Advancing our understanding of the role of B cells in neuroinflammatory and neurodegenerative diseases could lead to novel therapeutic approaches.
Journal Article
The Gale encyclopedia of neurological disorders
\"Provides in-depth coverage of neurological diseases and disorders, including stroke, multiple sclerosis, Parkinson disease, Tourette Syndrome, Alzheimer's disease, cerebral palsy, vertigo, amnesia, and epilepsy, targeted to patients, their families and allied health students\"--Provided by publisher.
The bowel and beyond: the enteric nervous system in neurological disorders
2016
Key Points
The enteric nervous system (ENS) is the largest component of the autonomic nervous system and is uniquely equipped with intrinsic microcircuits that enable it to orchestrate gastrointestinal function independently of central nervous system (CNS) input
Because many neurotransmitters, signalling pathways and anatomical properties are common to the ENS and CNS, pathophysiological processes that underlie CNS disease often have enteric manifestations
Neuronal connections and the immune system might provide conduits that allow diseases acquired in the gut to spread to the brain
Transmissible spongiform encephalopathies, autistic spectrum disorders, Parkinson disease, Alzheimer disease, amyotrophic lateral sclerosis, and varicella zoster virus (VZV) infection are examples of disorders with both gastrointestinal and neurological consequences
VZV reactivations from latency in enteric and other autonomic neurons that lack cutaneous projections are occult causes of zoster without rash that lead to gastrointestinal disease, meningitis and strokes
Research on the gut–brain axis of disease is reasonably new, concepts are changing rapidly, and further investigation is much needed
The enteric nervous system is vital for life, and its dysfunction participates not only in digestive disorders, but also in diseases of the central nervous system (CNS). Here, Rao and Gershon discuss the gastrointestinal consequences of neurological disorders, the acquisition of CNS disease in the gut and the spread of pathology along the gut–brain axis.
The enteric nervous system (ENS) is large, complex and uniquely able to orchestrate gastrointestinal behaviour independently of the central nervous system (CNS). An intact ENS is essential for life and ENS dysfunction is often linked to digestive disorders. The part the ENS plays in neurological disorders, as a portal or participant, has also become increasingly evident. ENS structure and neurochemistry resemble that of the CNS, therefore pathogenic mechanisms that give rise to CNS disorders might also lead to ENS dysfunction, and nerves that interconnect the ENS and CNS can be conduits for disease spread. We review evidence for ENS dysfunction in the aetiopathogenesis of autism spectrum disorder, amyotrophic lateral sclerosis, transmissible spongiform encephalopathies, Parkinson disease and Alzheimer disease. Animal models suggest that common pathophysiological mechanisms account for the frequency of gastrointestinal comorbidity in these conditions. Moreover, the neurotropic pathogen, varicella zoster virus (VZV), unexpectedly establishes latency in enteric and other autonomic neurons that do not innervate skin. VZV reactivation in these neurons produces no rash and is therefore a clandestine cause of gastrointestinal disease, meningitis and strokes. The gut–brain alliance has raised consciousness as a contributor to health, but a gut–brain axis that contributes to disease merits equal attention.
Journal Article
Neuroimmunity : a new science that will revolutionize how we keep our brains healthy and young
Overview: In the past, the brain was considered an autonomous organ, self-contained and completely separate from the body's immune system. But over the past twenty years, neuroimmunologist Michal Schwartz, together with her research team, not only has overturned this misconception but has brought to light revolutionary new understandings of brain health and repair. In this book Schwartz describes her research journey, her experiments, and the triumphs and setbacks that led to the discovery of connections between immune system and brain. Michal Schwartz, with Anat London, also explains the significance of the findings for future treatments of brain disorders and injuries, spinal cord injuries, glaucoma, depression, and other conditions such as brain aging and Alzheimer's and Parkinson's diseases. Scientists, physicians, medical students, and all readers with an interest in brain function and its relationship to the immune system in health and disease will find this book a valuable resource. With general readers in mind, the authors provide a useful primer to explain scientific terms and concepts discussed in the book.-- Source other than Library of Congress.
Paroxysmal sympathetic hyperactivity: the storm after acute brain injury
by
Menon, David K
,
Baguley, Ian J
,
Meyfroidt, Geert
in
Autonomic nervous system
,
Autonomic Nervous System Diseases - diagnosis
,
Autonomic Nervous System Diseases - etiology
2017
A substantial minority of patients who survive an acquired brain injury develop a state of sympathetic hyperactivity that can persist for weeks or months, consisting of periodic episodes of increased heart rate and blood pressure, sweating, hyperthermia, and motor posturing, often in response to external stimuli. The unifying term for the syndrome—paroxysmal sympathetic hyperactivity (PSH)—and clear diagnostic criteria defined by expert consensus were only recently established. PSH has predominantly been described after traumatic brain injury (TBI), in which it is associated with worse outcomes. The pathophysiology of the condition is not completely understood, although most researchers consider it to be a disconnection syndrome with paroxysms driven by a loss of inhibitory control over excitatory autonomic centres. Although therapeutic strategies to alleviate sympathetic outbursts have been proposed, their effects on PSH are inconsistent between patients and their influence on outcome is unknown. Combinations of drugs are frequently used and are chosen on the basis of local custom, rather than on objective evidence. New rigorous tools for diagnosis could allow better characterisation of PSH to enable stratification of patients for future therapeutic trials.
Journal Article
Neurological associations of COVID-19
2020
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of a scale not seen since the 1918 influenza pandemic. Although the predominant clinical presentation is with respiratory disease, neurological manifestations are being recognised increasingly. On the basis of knowledge of other coronaviruses, especially those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome epidemics, cases of CNS and peripheral nervous system disease caused by SARS-CoV-2 might be expected to be rare.
A growing number of case reports and series describe a wide array of neurological manifestations in 901 patients, but many have insufficient detail, reflecting the challenge of studying such patients. Encephalopathy has been reported for 93 patients in total, including 16 (7%) of 214 hospitalised patients with COVID-19 in Wuhan, China, and 40 (69%) of 58 patients in intensive care with COVID-19 in France. Encephalitis has been described in eight patients to date, and Guillain-Barré syndrome in 19 patients. SARS-CoV-2 has been detected in the CSF of some patients. Anosmia and ageusia are common, and can occur in the absence of other clinical features. Unexpectedly, acute cerebrovascular disease is also emerging as an important complication, with cohort studies reporting stroke in 2–6% of patients hospitalised with COVID-19. So far, 96 patients with stroke have been described, who frequently had vascular events in the context of a pro-inflammatory hypercoagulable state with elevated C-reactive protein, D-dimer, and ferritin.
Careful clinical, diagnostic, and epidemiological studies are needed to help define the manifestations and burden of neurological disease caused by SARS-CoV-2. Precise case definitions must be used to distinguish non-specific complications of severe disease (eg, hypoxic encephalopathy and critical care neuropathy) from those caused directly or indirectly by the virus, including infectious, para-infectious, and post-infectious encephalitis, hypercoagulable states leading to stroke, and acute neuropathies such as Guillain-Barré syndrome. Recognition of neurological disease associated with SARS-CoV-2 in patients whose respiratory infection is mild or asymptomatic might prove challenging, especially if the primary COVID-19 illness occurred weeks earlier. The proportion of infections leading to neurological disease will probably remain small. However, these patients might be left with severe neurological sequelae. With so many people infected, the overall number of neurological patients, and their associated health burden and social and economic costs might be large. Health-care planners and policy makers must prepare for this eventuality, while the many ongoing studies investigating neurological associations increase our knowledge base.
Journal Article