Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
759 result(s) for "Network analysis (Planning) Data processing."
Sort by:
M32 Computer Modeling of Water Distribution Systems, Fourth Edition
Computer modeling is a water utility's most powerful tool for managing and operating a water distribution system. This 4th edition of M32 Computer Modeling of Water Distribution Systems, describes how to build accurate water distribution system models, and use models to manage assets and solve hydraulic and water quality problems.
Network Flow Analysis
Network flow analysis is the art of studying the traffic on a computer network. Understanding the ways to export flow and collect and analyze data separates good network administrators from great ones. The detailed instructions in Network Flow Analysis teach the busy network administrator how to build every component of a flow-based network awareness system and how network analysis and auditing can help address problems and improve network reliability. You'll learn what flow is, how flows are used in network management, and how to use a flow analysis system. Real-world examples illustrate how to best apply the appropriate tools and how to analyze data to solve real problems. Author Michael W. Lucas compares existing popular tools for network management, explaining why they don't address common real-world issues and demonstrates how, once you understand the underlying process and techniques of flow management, building a flow management system from freely-available components is not only possible but actually a better choice than much more expensive systems.
Graph analysis and visualization
Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. -Study graphical examples of networks using clear and insightful visualizations -Analyze specifically-curated, easy-to-use data sets from various industries -Learn the software tools and programming languages that extract insights from data -Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.
The structure and dynamics of networks
From the Internet to networks of friendship, disease transmission, and even terrorism, the concept--and the reality--of networks has come to pervade modern society. But what exactly is a network? What different types of networks are there? Why are they interesting, and what can they tell us? In recent years, scientists from a range of fields--including mathematics, physics, computer science, sociology, and biology--have been pursuing these questions and building a new \"science of networks.\" This book brings together for the first time a set of seminal articles representing research from across these disciplines. It is an ideal sourcebook for the key research in this fast-growing field. The book is organized into four sections, each preceded by an editors' introduction summarizing its contents and general theme. The first section sets the stage by discussing some of the historical antecedents of contemporary research in the area. From there the book moves to the empirical side of the science of networks before turning to the foundational modeling ideas that have been the focus of much subsequent activity. The book closes by taking the reader to the cutting edge of network science--the relationship between network structure and system dynamics. From network robustness to the spread of disease, this section offers a potpourri of topics on this rapidly expanding frontier of the new science.
Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
Change detection based on remote sensing (RS) data is an important method of detecting changes on the Earth’s surface and has a wide range of applications in urban planning, environmental monitoring, agriculture investigation, disaster assessment, and map revision. In recent years, integrated artificial intelligence (AI) technology has become a research focus in developing new change detection methods. Although some researchers claim that AI-based change detection approaches outperform traditional change detection approaches, it is not immediately obvious how and to what extent AI can improve the performance of change detection. This review focuses on the state-of-the-art methods, applications, and challenges of AI for change detection. Specifically, the implementation process of AI-based change detection is first introduced. Then, the data from different sensors used for change detection, including optical RS data, synthetic aperture radar (SAR) data, street view images, and combined heterogeneous data, are presented, and the available open datasets are also listed. The general frameworks of AI-based change detection methods are reviewed and analyzed systematically, and the unsupervised schemes used in AI-based change detection are further analyzed. Subsequently, the commonly used networks in AI for change detection are described. From a practical point of view, the application domains of AI-based change detection methods are classified based on their applicability. Finally, the major challenges and prospects of AI for change detection are discussed and delineated, including (a) heterogeneous big data processing, (b) unsupervised AI, and (c) the reliability of AI. This review will be beneficial for researchers in understanding this field.
Remote Sensing and GIS in Natural Resource Management: Comparing Tools and Emphasizing the Importance of In-Situ Data
Remote sensing (RS) and Geographic Information Systems (GISs) provide significant opportunities for monitoring and managing natural resources across various temporal, spectral, and spatial resolutions. There is a critical need for natural resource managers to understand the expanding capabilities of image sources, analysis techniques, and in situ validation methods. This article reviews key image analysis tools in natural resource management, highlighting their unique strengths across diverse applications such as agriculture, forestry, water resources, soil management, and natural hazard monitoring. Google Earth Engine (GEE), a cloud-based platform introduced in 2010, stands out for its vast geospatial data catalog and scalability, making it ideal for global-scale analysis and algorithm development. ENVI, known for advanced multi- and hyperspectral image processing, excels in vegetation monitoring, environmental analysis, and feature extraction. ERDAS IMAGINE specializes in radar data analysis and LiDAR processing, offering robust classification and terrain analysis capabilities. Global Mapper is recognized for its versatility, supporting over 300 data formats and excelling in 3D visualization and point cloud processing, especially in UAV applications. eCognition leverages object-based image analysis (OBIA) to enhance classification accuracy by grouping pixels into meaningful objects, making it effective in environmental monitoring and urban planning. Lastly, QGIS integrates these remote sensing tools with powerful spatial analysis functions, supporting decision-making in sustainable resource management. Together, these tools when paired with in situ data provide comprehensive solutions for managing and analyzing natural resources across scales.
Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis
In the urban scene segmentation, the \"image-to-image translation issue\" refers to the fundamental task of transforming input images into meaningful segmentation maps, which essentially involves translating the visual information present in the input image into semantic labels for different classes. When this translation process is inaccurate or incomplete, it can lead to failed segmentation results where the model struggles to correctly classify pixels into the appropriate semantic categories. The study proposed a conditional Generative Adversarial Network (cGAN), for creating high-resolution urban maps from satellite images. The method combines semantic and spatial data using cGAN framework to produce realistic urban scenes while maintaining crucial details. To assess the performance of the proposed method, extensive experiments are performed on benchmark datasets, the ISPRS Potsdam and Vaihingen datasets. Intersection over Union (IoU) and Pixel Accuracy are two quantitative metrics used to evaluate the segmentation accuracy of the produced maps. The proposed method outperforms traditional methods with an IoU of 87% and a Pixel Accuracy of 93%. The experimental findings show that the suggested cGAN-based method performs better than traditional techniques, attaining better segmentation accuracy and generating better urban maps with finely detailed information. The suggested approach provides a framework for resolving the image-to-image translation difficulties in urban scene segmentation, demonstrating the potential of cGANs for producing excellent urban maps from satellite data.
Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey
The present survey examines the role of big data analytics in advancing remote sensing and geospatial analysis. The increasing volume and complexity of geospatial data are driving the adoption of machine learning (ML) and artificial intelligence (AI) techniques, such as convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, to extract meaningful insights from large, diverse datasets. These AI methods enhance the accuracy and efficiency of spatial and temporal data analysis, benefiting applications in environmental monitoring, urban planning, and disaster management. Despite these advancements, challenges related to computational efficiency, data integration, and model transparency remain. This paper also discusses emerging trends and highlights the potential of hybrid approaches, cloud computing, and edge processing in overcoming these challenges. The integration of AI with geospatial data is poised to significantly improve our ability to monitor and manage Earth systems, supporting more informed and sustainable decision-making.