Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
529 result(s) for "Neural Crest - pathology"
Sort by:
Gliomagenesis mimics an injury response orchestrated by neural crest-like cells
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis 1 , 2 . Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages—before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth—and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease. A study using glioblastoma mouse models, serial magnetic resonance imaging and single-cell profiling details changes in the identity and balance of cellular states from initiation of tumorigenesis to the end point.
Neuroblastoma pathogenesis: deregulation of embryonic neural crest development
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting ‘stemness’ and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders
Mutations associated with Treacher Collins syndrome perturb the subnuclear localization of an RNA helicase involved in ribosome biogenesis through activation of p53 protein, illustrating how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations. RNA-related regulation in craniofacial development Many craniofacial disorders are due to defects in cranial neural crest cells, a cell type that gives rise to the majority of facial structures during embryogenesis. Yet, many of the genetic defects underlying these disorders are heterozygous mutations in general transcription and translation regulators, which are not tissue-specific. Why cranial neural crest cells are more sensitive than others to these mutations during development is not well understood. Joanna Wysocka and colleagues show that mutations associated with Treacher Collins syndrome perturb the subnuclear localization of an RNA helicase involved in ribosome biogenesis, and that this effect occurs specifically in cranial neural crest cells. This protein relocalization process, which involves the activation of p53, impairs ribosome biogenesis and causes craniofacial defects. Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis 1 , 2 . Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis 3 , 4 , the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis 5 , we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1 ), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond–Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.
Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271
A marker for cancer stem cells A number of studies have reported the existence of cancer stem cells in human melanomas, each one capable of producing a tumour. Boiko et al . examined a broad spectrum of clinical samples taken from melanomas and report that the neural crest stem-cell marker CD271 is a marker for cancer stem cells, allowing the identification and prospective isolation of melanoma cancer stem cells. In this work, the neural crest stem cell marker CD271 is implicated as a cancer stem cell marker, allowing identification and prospective isolation of melanoma cancer stem cells. The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years 1 . Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271 + MTSC population using a process that maximizes viable cell transplantation 1 , 2 . The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2 −/− γc −/− mice. The CD271 + subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271 + melanoma cells into engrafted human skin or bone in Rag2 −/− γc −/− mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271 − cells. We also show that in mice, tumours derived from transplanted human CD271 + melanoma cells were capable of metastatsis in vivo. CD271 + melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage.
Neuroblastoma: developmental biology, cancer genomics and immunotherapy
Key Points Neuroblastoma is a heterogeneous disease. Over 60% of neuroblastomas are metastatic, and most are diagnosed after 18 months of age, with a substantial number carrying MYCN amplification or α-thalassaemia/mental retardation syndrome X-linked (ATRX) mutation, and/or anaplastic lymphoma receptor tyrosine kinase (ALK) mutation. The rest have fairly few somatic mutations and are highly curable with either surgery alone or surgery and low-dose chemotherapy. Neural crest cells and neuroblastoma share common pathways and genes, including paired-like homeobox 2b ( PHOX2B ), MYCN and ALK . A predictive profile of genetic predisposition to neuroblastoma is emerging via genome-wide association and whole-genome sequencing analyses. However, in contrast to adult cancers, there is a general paucity of recurrent somatic mutations in neuroblastoma. The biology of catecholamine transport has been successfully exploited to provide the tumour-specific neurotransmitter analogue meta-iodobenzylguanidine (MIBG) for diagnosis and anti-neuroblastoma therapy. This advance shows how understanding unique tumour physiology can lead to new therapeutics that are not directly related to specific genetic lesions. Chromosomal aberration is common in neuroblastoma; numerical whole-chromosomal gains are typically found in low-risk tumours, whereas segmental chromosomal gains or losses and somatic mutations are associated with high-risk disease. Research on epigenetic regulation and microRNA control may uncover new prognostic markers and therapeutic targets for neuroblastoma. Neuroblastoma can evade T cells and natural killer cells while exploiting inflammatory macrophages to enhance its survival. Monoclonal antibodies, cytokines and multifunctional antibodies could potentially reactivate antitumour activity in these cells. Anti-GD2 antibodies, when combined with granulocyte–macrophage colony-stimulating factor with or without interleukin-2, are one of the most successful and important strategies for the curative approach to neuroblastoma. Both myeloid effectors and natural killer cells and their cell-surface activating or inhibitory receptors have crucial roles in the clinical response. Over the past decade, our understanding of neuroblastoma has advanced tremendously. This Review discusses the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools to bring these promising scientific advances into the clinic. Neuroblastoma is a solid tumour that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained to developing risk-based therapies and, ultimately, improving outcome. In this Review we discuss the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools for bringing these promising scientific advances into the clinic.
DHODH modulates transcriptional elongation in the neural crest and melanoma
Oncogenes BRAF(V600E) and SETDB1 in melanoma Transgenic zebrafish carrying the human oncogene BRAF(V600E) , the most common mutation in melanoma patients, provide a convenient model for melanoma. Two papers from Leonard Zon and colleagues demonstrate the potential of this system in the study of cancer genetics and in drug development. Ceol et al . screen for genes that cooperate with mutated BRAF , and identify SETDB1 as capable of accelerating melanoma formation in fish. The gene is found in a region that is frequently amplified in human melanomas, and its gene product, SETDB1, is a histone methylating enzyme that is often overexpressed in those melanomas. This work establishes SETDB1 as an important oncogene. White et al . find expression of a gene signature in melanoma-susceptible zebrafish embryos that is indicative of disrupted differentiation of neural crest progenitors. A chemical screen identifies leflunomide, an immunomodulatory drug used to treat rheumatoid arthritis, as an inhibitor of neural crest stem cells. Leflunomide has antimelanoma activity in human melanoma xenografts and might prove useful as an anticancer drug, particularly in combination with BRAF inhibitors. In a zebrafish model of melanoma driven by activated BRAF, this study finds expression of a gene signature indicative of disrupted terminal differentiation of neural crest progenitors. A chemical screen led to the identification of leflunomide as an inhibitor of neural crest stem cells. Leflunomide inhibits dihydroorotate dehydrogenase and thereby transcriptional elongation, including genes involved in neural crest development and melanoma growth. Leflunomide has anti-melanoma activity in the zebrafish model and human melanoma xenografts, and might prove useful as an anticancer drug. Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma 1 . We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53 ) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation.
POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4
Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2–1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.
Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution
Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human–chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis - from trans -regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 ( LIMBIN ), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human–chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans. Human–chimpanzee tetraploid fusions serve as a model to study gene expression differences between these species, allowing for separation of cis - from trans -regulatory effects and analysis of unique craniofacial morphologies.
Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies. Malignant rhabdoid tumours (MRT) have been suggested to originate in the ectoderm-derived neural crest. Here, the authors analyse MRTs using phylogenetics, scRNA-seq, and patient-derived organoids; they find evidence for an MRT origin in the neural crest lineage and suggest differentiation treatment with HDAC/mTOR inhibitors.
MYCN induces neuroblastoma in primary neural crest cells
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN -amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN -amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.