Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeDegree TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceGranting InstitutionTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
159,608
result(s) for
"Neural Networks, Computer"
Sort by:
Neural control engineering : the emerging intersection between control theory and neuroscience
2012,2011
How powerful new methods in nonlinear control engineering can be applied to neuroscience, from fundamental model formulation to advanced medical applications.Over the past sixty years, powerful methods of model-based control engineering have been responsible for such dramatic advances in engineering systems as autolanding aircraft, autonomous vehicles, and even weather forecasting. Over those same decades, our models of the nervous system have evolved from single-cell membranes to neuronal networks to large-scale models of the human brain. Yet until recently control theory was completely inapplicable to the types of nonlinear models being developed in neuroscience. The revolution in nonlinear control engineering in the late 1990s has made the intersection of control theory and neuroscience possible. In Neural Control Engineering, Steven Schiff seeks to bridge the two fields, examining the application of new methods in nonlinear control engineering to neuroscience. After presenting extensive material on formulating computational neuroscience models in a control environment-including some fundamentals of the algorithms helpful in crossing the divide from intuition to effective application-Schiff examines a range of applications, including brain-machine interfaces and neural stimulation. He reports on research that he and his colleagues have undertaken showing that nonlinear control theory methods can be applied to models of single cells, small neuronal networks, and large-scale networks in disease states of Parkinson's disease and epilepsy. With Neural Control Engineering the reader acquires a working knowledge of the fundamentals of control theory and computational neuroscience sufficient not only to understand the literature in this trandisciplinary area but also to begin working to advance the field. The book will serve as an essential guide for scientists in either biology or engineering and for physicians who wish to gain expertise in these areas.
Advanced deep learning with TensorFlow 2 and Keras : apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more
by
Atienza, Rowel
in
COM004000 COMPUTERS / Intelligence (AI) & Semantics
,
COMPUTERS / Natural Language Processing
,
COMPUTERS / Neural Networks
2020
A second edition of the bestselling guide to exploring and mastering deep learning with Keras, updated to include TensorFlow 2.x with new chapters on object detection, semantic segmentation, and unsupervised learning using mutual information.
Robust optimization of spline models and complex regulatory networks : theory, methods and applications
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS - and robust (conic) generalized partial linear models - R(C)GPLM - under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.