Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,745 result(s) for "Neuronal damage"
Sort by:
Favorable Effects of Virgin Coconut Oil on Neuronal Damage and Mortality after a Stroke Incidence in the Stroke-Prone Spontaneously Hypertensive Rat
Stroke is consistently one of the top ten causes of morbidity and mortality globally, whose outcomes are quite variable, necessitating case-specific management. Prophylactic diets before the onset of stroke have been implicated to work. In this research, the effects of virgin coconut oil (VCO) on stroke were evaluated using a stroke-prone spontaneously hypertensive rat (SHRSP) model. Eight-week-old SHRSPs were subjected to the repeated oral administration (5 mL/kg/day) of either 1% Tween 80 (group A) or VCO (group B). An early stroke onset was observed due to hypertension that was aggravation by the administration of 1% NaCl in water ad libitum. The following data were collected: the days until stroke occurred, the survival rate until the animal died, and blood pressure (BP) every two weeks using the tail-cuff method. After necropsy, the organs were harvested, and the brain was processed for a routine histopathological analysis. VCO delayed the incidence of it and prolonged their survival. Compared to group A, group B showed a significantly lowered BP by 20 mmHg at four weeks after the start of VCO treatment. Lastly, the brain histopathology showed that the structurally damaged areas were smaller in group B than they were in group A. The VCO could have protective effects on the brain before and even after stroke incidence.
Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia
Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest(CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet(CV) and Fluore-Jade B(F-J B) staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1(Iba-1), glial fibrillary acidic protein(GFAP), and tumor necrosis factor-alpha(TNF-α) immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA(about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA). Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day postCA, and they were activated(enlarged cell bodies with short and thicken processes) in all layers 2 days postCA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.
Change of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage. Male ICR mice were used as experimental animals, and 30 mg/kg KA was administered intraperitoneally. To confirm the KA-induced neuronal damage in the hippocampal CA3 region, Fluoro-Jade B histofluorescence staining was performed. In addition, the time-dependent change of Nurr1 protein expression was also examined using immunohistochemistry and western blot analysis. Marked neuronal damage was observed in the hippocampal CA3 region at 24 hr after KA injection. In addition, both Nurr1 immunoreactivity and protein level were significantly increased at 6 hr and 12 hr after KA injection, and then decreased at 24 hr after KA injection. This result indicates that KA-induced alteration of Nurr1 protein expression may be associated with the neuronal degeneration in the hippocampal CA3 region after KA injection.
Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review
The increasing use of titanium dioxide nanoparticles (TiO NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO NPs on both humans and the environment. Notably, TiO NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO NPs in different species and in vitro models. Following exposure, TiO NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO NPs. However, a systematic comparison of the neurotoxic effects of TiO NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO NPs.
Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice
We investigated the protective effect and mechanisms of apigenin against cognitive impairments in a scopolamine-injected mouse model. Our results showed that intraperitoneal (i.p.) injection of scopolamine leads to learning and memory dysfunction, whereas the administration of apigenin (synthetic compound, 100 and 200 mg/kg/day) improved cognitive ability, which was confirmed by behavioral tests such as the T-maze test, novel objective recognition test, and Morris water maze test in mice. In addition, scopolamine-induced lipid peroxidation in the brain was attenuated by administration of apigenin. To further evaluate the protective mechanisms of apigenin on cognitive and memory function, Western blot analysis was carried out. Administration of apigenin decreased the B-cell lymphoma 2-associated X/B-cell lymphoma 2 (Bax/Bcl-2) ratio and suppressed caspase-3 and poly ADP ribose polymerase cleavage. Furthermore, apigenin down-regulated the β-site amyloid precursor protein-cleaving enzyme, along with presenilin 1 (PS1) and PS2 protein levels. Apigenin-administered mice showed lower protein levels of a receptor for advanced glycation end-products, whereas insulin-degrading enzyme, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) expression were promoted by treatment with apigenin. Therefore, this study demonstrated that apigenin is an active substance that can improve cognitive and memory functions by regulating apoptosis, amyloidogenesis, and BDNF/TrkB signaling pathways.
MMP-9 Inhibition: a Therapeutic Strategy in Ischemic Stroke
Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood–brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia.
Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitro and in vivo
Ischemic stroke is characterized by the presence of both brain ischemic and reperfusion-induced injuries in the brain, leading to neuronal dysfunction and death. Artemisinin, an FDA-approved antimalarial drug, has been reported to have neuroprotective properties. However, the effect of artemisinin on ischemic stroke is not known. In the present study, we investigated the effect of artemisinin on ischemic stroke using an oxygen-glucose deprivation/reperfusion (OGD/RP) cellular model and a mouse middle cerebral artery occlusion (MCAO) animal model and examined the underlying mechanisms. The obtained results revealed that a subclinical antimalarial concentration of artemisinin increased cell viability and decreased LDH release and cell apoptosis. Artemisinin also attenuated the production of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential (Δψm). Importantly, artemisinin attenuated the infarction volume and the brain water content in the MCAO animal model. Artemisinin also improved neurological and behavioural outcomes and restored grasp strength and the recovery of motor function in MCAO animals. Furthermore, artemisinin treatment significantly inhibited the molecular indices of apoptosis, oxidative stress and neuroinflammation and activated the ERK1/2/CREB/BCL-2 signaling pathway. Further validation of the involved signaling pathway by the ERK1/2 inhibitor PD98059 revealed that inhibiting the ERK1/2 signaling pathway or silencing ERK1/2 reversed the neuroprotective effects of artemisinin. These results indicate that artemisinin provides neuroprotection against ischemic stroke via the ERK1/2/CREB/BCL-2 signaling pathway. Our study suggests that artemisinin may play an important role in the prevention and treatment of stroke.
E3 Ubiquitin Ligase FBXO3 Drives Neuroinflammation to Aggravate Cerebral Ischemia/Reperfusion Injury
Ischemic stroke, one of the most universal causes of human mortality and morbidity, is pathologically characterized by inflammatory cascade, especially during the progression of ischemia/reperfusion (I/R) injury. F-Box Protein 3 (FBXO3), a substrate-recognition subunit of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, has recently been proven to be severed as an underlying pro-inflammatory factor in pathological processes of diverse diseases. Given these considerations, the current study aims at investigating whether FBXO3 exerts impacts on inflammation in cerebral I/R injury. In this study, first, it was verified that FBXO3 protein expression increased after a middle cerebral artery occlusion/reperfusion (MCAO/R) model in Sprague–Dawley (SD) rats and was specifically expressed in neurons other than microglia or astrocytes. Meanwhile, in mouse hippocampal neuronal cell line HT22 cells, the elevation of FBXO3 protein was observed after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment. It was also found that interference of FBXO3 with siRNA significantly alleviated neuronal damage via inhibiting the inflammatory response in I/R injury both in vivo and in vitro. The FBXO3 inhibitor BC-1215 was used to confirm the pro-inflammatory effect of FBXO3 in the OGD/R model as well. Furthermore, by administration of FBXO3 siRNA and BC-1215, FBXO3 was verified to reduce the protein level of Homeodomain-Interacting Protein Kinase 2 (HIPK2), likely through the ubiquitin–proteasome system (UPS), to aggravate cerebral I/R injury. Collectively, our results underline the detrimental effect FBXO3 has on cerebral I/R injury by accelerating inflammatory response, possibly through ubiquitylating and degrading HIPK2. Despite the specific interaction between FBXO3 and HIPK2 requiring further study, we believe that our data suggest the therapeutic relevance of FBXO3 to ischemic stroke and provide a new perspective on the mechanism of I/R injury.
The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion’s early and late stages. Graphical Abstract
GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome
Background The complex pathophysiology of epilepsy hampers the development of effective treatments. Although more than ten kinds of anti-seizures drugs (ASDs) have good effects on seizure control worldwide, about 30% of patients still display pharmacoresistance against ASDs. Neuroinflammation seems to play a crucial role in disease progression. G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis. However, the role of GPR120 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of GPR120 in epilepsy. Methods Male adult C57BL/6 mice were intracranially injected with kainic acid (KA) to establish epilepsy model, and the adeno associated virus (AAV) was administered intracranially at 3 weeks before KA injection. VX765 was administered by intragastric administration at 30 min before KA induced and an equal dose administrated twice a day (10 a.m. and 4 p.m.) lasting 7 days until the mice were killed. Western blot analysis, immunofluorescence staining, video monitoring of seizure, LFP recording, Nissl staining were performed. Results GPR120 was increased in both the hippocampus and cortex in the KA-induced model with temporal lobe epilepsy (TLE), and both were most highly expressed at 7 days after KA injection. Overexpression of GPR120 significantly alleviated epileptic activity, reduced neuronal death after status epilepticus (SE), downregulated the expression of IL-1β, IL-6, IL-18, and pyrin domain-containing protein 3 (NLRP3) inflammasome, whereas knockdown GPR120 showed the opposite effect. The effects of GPR120 knockdown were reversed by VX765 inhibition cysteinyl aspartate specific proteinase-1 (Caspase-1). Conclusion GPR120 modulates epileptic seizure activity and affects neuronal survival in KA-induced mouse model of temporal lobe epilepsy. Furthermore, GPR120 regulated neuroinflammation in epileptic animals through NLRP3/Caspase-1/IL-1β signaling pathway.