Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15,598
result(s) for
"Neuropeptides"
Sort by:
Revisiting the role of Substance P and CGRPalpha
2025
Mice lacking two neuropeptides thought to be essential for processing pain show no change in how they respond to a wide range of harmful stimuli.
Journal Article
Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing
by
Stanhope, Meredith E.
,
Pascual, Micah G.
,
Schulz, David J.
in
American lobster
,
Amino Acid Sequence
,
Animal models
2015
Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone and short neuropeptide F. Multiple receptors were identified for most peptide families. These data represent the most complete description of the molecular underpinnings of peptidergic signaling in H. americanus, and will serve as a foundation for future gene-based studies of neuropeptidergic control in the lobster.
Journal Article
Repertoires of G protein-coupled receptors for Ciona-specific neuropeptides
by
Osugi, Tomohiro
,
Miyasaka, Natsuko
,
Satake, Honoo
in
Animals
,
Biochemistry
,
Biological activity
2019
Neuropeptides play pivotal roles in various biological events in the nervous, neuroendocrine, and endocrine systems, and are correlated with both physiological functions and unique behavioral traits of animals. Elucidation of functional interaction between neuropeptides and receptors is a crucial step for the verification of their biological roles and evolutionary processes. However, most receptors for novel peptides remain to be identified. Here, we show the identification of multiple G protein-coupled receptors (GPCRs) for species-specific neuropeptides of the vertebrate sister group, Ciona intestinalis Type A, by combining machine learning and experimental validation. We developed an original peptide descriptor-incorporated support vector machine and used it to predict 22 neuropeptide–GPCR pairs. Of note, signaling assays of the predicted pairs identified 1 homologous and 11 Ciona-specific neuropeptide–GPCR pairs for a 41% hit rate: the respective GPCRs for Ci-GALP, Ci-NTLP-2, Ci-LF-1, Ci-LF-2, Ci-LF-5, Ci-LF-6, Ci-LF-7, Ci-LF-8, Ci-YFV-1, and Ci-YFV-3. Interestingly, molecular phylogenetic tree analysis revealed that these receptors, excluding the Ci-GALP receptor, were evolutionarily unrelated to any other known peptide GPCRs, confirming that these GPCRs constitute unprecedented neuropeptide receptor clusters. Altogether, these results verified the neuropeptide–GPCR pairs in the protochordate and evolutionary lineages of neuropeptide GPCRs, and pave the way for investigating the endogenous roles of novel neuropeptides in the closest relatives of vertebrates and the evolutionary processes of neuropeptidergic systems throughout chordates. In addition, the present study also indicates the versatility of the machine-learning–assisted strategy for the identification of novel peptide–receptor pairs in various organisms.
Journal Article
The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila
2015
Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in
Drosophila
, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the
Drosophila
insulin-like peptides (DILPs). Here, we provide evidence that the
Drosophila
neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene,
Dar-2
, is expressed in both the insulin and AKH producing cells. Silencing of
Dar-2
in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking
AstA
accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore,
AstA
and
Dar-2
are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs.
Journal Article
The Neuropeptide Y (NPY)-ergic System is Associated with Behavioral Resilience to Stress Exposure in an Animal Model of Post-Traumatic Stress Disorder
by
Cohen, Hagit
,
Liu, Tianmin
,
Kaplan, Zeev
in
631/378/1689/1830
,
631/378/1689/1831
,
631/92/436/2388
2012
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.
Journal Article
Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling
by
Yañez-Guerra, Luis Alfonso
,
Zhong, Xingxing
,
Moghul, Ismail
in
Animals
,
Arthropods
,
CHO Cells
2020
Neuropeptide signalling systems comprising peptide ligands and cognate receptors are evolutionarily ancient regulators of physiology and behaviour. However, there are challenges associated with determination of orthology between neuropeptides in different taxa. Orthologs of vertebrate neuropeptide-Y (NPY) known as neuropeptide-F (NPF) have been identified in protostome invertebrates, whilst prolactin-releasing peptide (PrRP) and short neuropeptide-F (sNPF) have been identified as paralogs of NPY/NPF in vertebrates and protostomes, respectively. Here we investigated the occurrence of NPY/NPF/PrRP/sNPF-related signalling systems in a deuterostome invertebrate phylum – the Echinodermata. Analysis of transcriptome/genome sequence data revealed loss of NPY/NPF-type signalling, but orthologs of PrRP-type neuropeptides and sNPF/PrRP-type receptors were identified in echinoderms. Furthermore, experimental studies revealed that the PrRP-type neuropeptide pQDRSKAMQAERTGQLRRLNPRF-NH2 is a potent ligand for a sNPF/PrRP-type receptor in the starfish Asterias rubens. Our findings indicate that PrRP-type and sNPF-type signalling systems are orthologous and originated as a paralog of NPY/NPF-type signalling in Urbilateria.
Journal Article
Structural basis of ligand binding modes at the neuropeptide Y Y 1 receptor
by
Bosse, Mathias
,
Han, Shuo
,
Yang, Zhenlin
in
Arginine - analogs & derivatives
,
Arginine - chemistry
,
Arginine - metabolism
2018
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology
. The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y
, Y
, Y
and Y
receptors, with different affinity and selectivity
. NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y
receptor (Y
R)
. A number of peptides and small-molecule compounds have been characterized as Y
R antagonists and have shown clinical potential in the treatment of obesity
, tumour
and bone loss
. However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability
. Here we report crystal structures of the human Y
R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y
R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y
R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y
R can enable structure-based drug discovery that targets NPY receptors.
Journal Article
Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin
by
Texada, Michael J.
,
Zandawala, Meet
,
Yurgel, Maria E.
in
Animals
,
Animals, Genetically Modified
,
Behavior
2018
Behavior and physiology are orchestrated by neuropeptides acting as central neuromodulators and circulating hormones. An outstanding question is how these neuropeptides function to coordinate complex and competing behaviors. In Drosophila, the neuropeptide leucokinin (LK) modulates diverse functions, but mechanisms underlying these complex interactions remain poorly understood. As a first step towards understanding these mechanisms, we delineated LK circuitry that governs various aspects of post-feeding physiology and behavior. We found that impaired LK signaling in Lk and Lk receptor (Lkr) mutants affects diverse but coordinated processes, including regulation of stress, water homeostasis, feeding, locomotor activity, and metabolic rate. Next, we sought to define the populations of LK neurons that contribute to the different aspects of this physiology. We find that the calcium activity in abdominal ganglia LK neurons (ABLKs), but not in the two sets of brain neurons, increases specifically following water consumption, suggesting that ABLKs regulate water homeostasis and its associated physiology. To identify targets of LK peptide, we mapped the distribution of Lkr expression, mined a brain single-cell transcriptome dataset for genes coexpressed with Lkr, and identified synaptic partners of LK neurons. Lkr expression in the brain insulin-producing cells (IPCs), gut, renal tubules and chemosensory cells, correlates well with regulatory roles detected in the Lk and Lkr mutants. Furthermore, these mutants and flies with targeted knockdown of Lkr in IPCs displayed altered expression of insulin-like peptides (DILPs) and transcripts in IPCs and increased starvation resistance. Thus, some effects of LK signaling appear to occur via DILP action. Collectively, our data suggest that the three sets of LK neurons have different targets, but modulate the establishment of post-prandial homeostasis by regulating distinct physiological processes and behaviors such as diuresis, metabolism, organismal activity and insulin signaling. These findings provide a platform for investigating feeding-related neuroendocrine regulation of vital behavior and physiology.
Journal Article
The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster
2021
The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly,
Drosophila melanogaster
. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.
Incretin hormones regulate insulin and glucagon secretion in mammals, but similar peptides have not been characterized in invertebrates. Here the authors show that neuropeptide F functions similar to mammalian incretin in fruit flies, responding to sugar and enhancing insulin-like peptide secretion.
Journal Article
The neuropeptide landscape of human prefrontal cortex
by
Barde, Swapnali
,
von Feilitzen, Kalle
,
Hortobágyi, Tibor
in
Adiponectin
,
Amphetamines
,
anterior cingulate cortex
2022
Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter—related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine–regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.
Journal Article