Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
415
result(s) for
"Neurotoxic agents."
Sort by:
Poison arrows : North American Indian hunting and warfare
2007,2009
Biological warfare is a menacing twenty-first-century issue, but its origins extend to antiquity. While the recorded use of toxins in warfare in some ancient populations is rarely disputed (the use of arsenical smoke in China, which dates to at least 1000 BC, for example) the use of “poison arrows” and other deadly substances by Native American groups has been fraught with contradiction. At last revealing clear documentation to support these theories, anthropologist David Jones transforms the realm of ethnobotany in Poison Arrows. Examining evidence within the few extant descriptive accounts of Native American warfare, along with grooved arrowheads and clues from botanical knowledge, Jones builds a solid case to indicate widespread and very effective use of many types of toxins. He argues that various groups applied them to not only warfare but also to hunting, and even as an early form of insect extermination. Culling extensive ethnological, historical, and archaeological data, Jones provides a thoroughly comprehensive survey of the use of ethnobotanical and entomological compounds applied in wide-ranging ways, including homicide and suicide. Although many narratives from the contact period in North America deny such uses, Jones now offers conclusive documentation to prove otherwise. A groundbreaking study of a subject that has been long overlooked, Poison Arrows imparts an extraordinary new perspective to the history of warfare, weaponry, and deadly human ingenuity.
Assessing the Toxicity of ILagocephalus sceleratus/I Pufferfish from the Southeastern Aegean Sea and the Relationship of Tetrodotoxin with Gonadal Hormones
by
Peristeraki, Panagiota
,
Kagiampaki, Eirini
,
Kondylatos, Gerasimos
in
Environmental aspects
,
Health aspects
,
Neurotoxic agents
2023
Given the dramatic increase in the L. sceleratus population in the southeastern Aegean Sea, there is growing interest in assessing the toxicity of this pufferfish and the factors controlling its tetrodotoxin (TTX) content. In the present study, liver, gonads, muscle and skin of 37 L. sceleratus specimens collected during May and June 2021 from the island of Rhodes, Greece, were subjected to multi-analyte profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to quantitate TTX and evaluate whether this biotoxin interrelates with hormones. TTX and its analogues 4-epiTTX, 11-deoxyTTX, 11-norTTX-6-ol, 4,9-anhydroTTX and 5,11/6,11-dideoxyTTX were detected in all tissue types. Liver and gonads were the most toxic tissues, with the highest TTX concentrations being observed in the ovaries of female specimens. Only 22% of the analyzed muscle samples were non-toxic according to the Japanese toxicity threshold (2.2 μg TTX eq g[sup.−1] ), confirming the high poisoning risk from the inadvertent consumption of this species. Four steroid hormones (i.e., cortisol, testosterone, androstenedione and β-estradiol) and the gonadotropin-releasing hormone (GnRH) were detected in the gonads. Androstenedione dominated in female specimens, while GnRH was more abundant in males. A positive correlation of TTX and its analogues with β-estradiol was observed. However, a model incorporating sex rather than β-estradiol as the independent variable proven to be more efficient in predicting TTX concentration, implying that other sex-related characteristics are more important than specific hormone-regulated processes.
Journal Article
Tetrodotoxin and Its Analogues in the Food-Capture and Defense Organs of the Palaeonemertean ICephalothrix/I cf. Isimula/I
by
Malykin, Grigorii V
,
Velansky, Peter V
,
Magarlamov, Timur Yu
in
Health aspects
,
Identification and classification
,
Neurotoxic agents
2024
Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells and epithelial tissues. The highest TTXs concentrations were detected in a total extract from the intestine of the anterior part of the body and also in a total extract from the proboscis. However, many questions as to the TTXs distribution in the organs of the anterior part of the worm’s body and the functions of the toxins in these organs are still unanswered. In the present report, we provide additional results of a detailed and comprehensive analysis of TTXs distribution in the nemertean’s proboscis, buccal cavity, and cephalic gland using an integrated approach including high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS), confocal laser scanning microscopy with anti-TTX antibodies, light and electron microscopies, and observations of feeding behavior. For the proboscis, we have found a TTXs profile different from that characteristic of other organs and tissues. We have also shown for the first time that the major amount of TTXs is localized in the anterior part of the proboscis that is mainly involved in hunting. TTX-containing glandular cells, which can be involved in the prey immobilization, have been found in the buccal cavities of the nemerteans. A significant contribution of the cephalic gland to the toxicity of this animal has been shown for the first time, and the role of the gland is hypothesized to be involved not only in protection against potential enemies but also in immobilizing prey. The data obtained have made it possible to extend the understanding of the role and features of the use of TTXs in the organs of the anterior part of nemertean’s body.
Journal Article
New insights in animal models of neurotoxicity-induced neurodegeneration
by
Sanfeliu, Coral
,
Bartra, Clara
,
Rodríguez-Farré, Eduard
in
experimental models
,
neurodegeneration
,
neuroinflammation
2024
The high prevalence of neurodegenerative diseases is an unintended consequence of the high longevity of the population, together with the lack of effective preventive and therapeutic options. There is great pressure on preclinical research, and both old and new models of neurodegenerative diseases are required to increase the pipeline of new drugs for clinical testing. We review here the main models of neurotoxicity-based animal models leading to central neurodegeneration. Our main focus was on studying how changes in neurotransmission and neuroinflammation, mainly in rodent models, contribute to harmful processes linked to neurodegeneration. The majority of the models currently in use mimic Parkinson’s disease (PD) and Alzheimer’s disease (AD), which are the most common neurodegenerative conditions in older adults. AD is the most common age-related dementia, whereas PD is the most common movement disorder with also cases of dementia. Several natural toxins and xenobiotic agents induce dopaminergic neurodegeneration and can reproduce neuropathological traits of PD. The literature analysis of MPTP, 6-OH-dopamine, and rotenone models suggested the latter as a useful model when specific doses of rotenone were administrated systemically to C57BL/6 mice. Cholinergic neurodegeneration is mainly modelled with the toxin scopolamine, which is a useful rodent model for the screening of protective drugs against cognitive decline and AD. Several agents have been used to model neuroinflammation-based neurodegeneration and dementia in AD, including lipopolysaccharide (LPS), streptozotocin, and monomeric C-reactive protein. The bacterial agent LPS makes a useful rodent model for testing anti-inflammatory therapies to halt the development and severity of AD. However, neurotoxin models might be more useful than genetic models for drug discovery in PD but that is not the case in AD where they cannot beat the new developments in transgenic mouse models. Overall, we should work using all available models, either in vivo , in vitro , or in silico , considering the seriousness of the moment and urgency of developing effective drugs.
Journal Article
Combined Neurotoxic Effects of Commercial Formulations of Pyrethroid : Behavioral, Molecular, and Histopathological Analysis
by
Savuța, Gheorghe
,
Solcan, Carmen
,
Petrovici, Adriana
in
Environmental aspects
,
Health aspects
,
Imidacloprid
2025
The use of different commercial products that involve one or multiple active substances with specific targeted-pests control has become a widespread practice. Because of this, a severe range of significant consequences has been often reported. Among the most used pesticides worldwide are deltamethrin (DM) and imidacloprid (IMI). With a significative effect on the insect’s nervous system, DM acts on the voltage-gated sodium channels in nerve cell membranes, while IMI mimics the acetylcholine neurotransmitter by binding irreversibly to the nicotinic acetylcholine receptors. This study investigates the neurotoxic effects of sub-chronic exposure to commercial formulations of deltamethrin (DM) and imidacloprid (IMI) in adult zebrafish, both individually and in combination. The formulations used in this study contain additional ingredients commonly found in commercial pesticide products, which may contribute to overall toxicity. Fish were exposed to environmentally relevant concentrations of these pesticides for 21 days, individually or in combination. Behavioral, molecular, and histopathological analyses were conducted to assess the impact of these pesticides. Zebrafish exhibited dose-dependent behavioral alterations, particularly in the combined exposure groups, including increased erratic swimming and anxiety-like behavior. Gene expression analysis revealed significant changes in neurotrophic factors (BDNF, NGF, ntf-3, ntf-4/5, ntf-6/7 ) and their receptors (ntrk1, ntrk2a, ntrk2b, ntrk3a, ntrk3b, ngfra, ngfrb ), indicating potential neurotoxic effects. Histopathological examination confirmed neuronal degeneration, gliosis, and vacuolization, with more severe impairments observed in pesticide mixture treatments. These findings highlight the neurotoxic potential of pesticide formulations in aquatic environments and emphasize the need for stricter regulations on pesticide mixtures and further research on pesticide interactions. Our findings emphasize that the combination of pesticides could trigger a synergistic effect by maximizing the toxicity of each compound. Thus, it is a well-known practice for pyrethroids and neonicotinoids to be used together in agriculture. Even so, its prevalence in agriculture and the need to investigate its actual impact on human health, biodiversity, and ecosystem mitigates the development of new strategies for assessing the risk and, at the same time, enhancing the effectiveness.
Journal Article
Tissue Distribution and Metabolization of Ciguatoxins in an Herbivorous Fish following Experimental Dietary Exposure to IGambierdiscus polynesiensis/I
by
Ben Gharbia, Hela
,
Chinain, Mireille
,
Lavenu, Laura
in
Bioaccumulation
,
Dinoflagellates
,
Food and nutrition
2023
Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g[sup.−1] fish d[sup.−1] . CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.
Journal Article
High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats
Background
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive treatment for ischemic stroke. Astrocytes regulation has been suggested as one mechanism for rTMS effectiveness. But how rTMS regulates astrocytes remains largely undetermined. There were neurotoxic and neuroprotective phenotypes of astrocytes (also denoted as classically and alternatively activated astrocytes or A1 and A2 astrocytes) pertaining to pro- or anti-inflammatory gene expression. Pro-inflammatory or neurotoxic polarized astrocytes were induced during cerebral ischemic stroke. The present study aimed to investigate the effects of rTMS on astrocytic polarization during cerebral ischemic/reperfusion injury.
Methods
Three rTMS protocols were applied to primary astrocytes under normal and oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Cell survival, proliferation, and phenotypic changes were assessed after 2-day treatment. Astrocytes culture medium (ACM) from control, OGD/R, and OGD/R + rTMS groups were mixed with neuronal medium to culture neurons for 48 h and 7 days, in order to explore the influence on neuronal survival and synaptic plasticity. In vivo, rats were subjected to middle cerebral artery occlusion (MCAO), and received posterior orbital intravenous injection of ACM collected from different groups at reperfusion, and at 3 days post reperfusion. The apoptosis in the ischemic penumbra, infarct volumes, and the modified Neurological Severity Score (mNSS) were evaluated at 1 week after reperfusion, and cognitive functions were evaluated using the Morris Water Maze (MWM) tests. Finally, the 10 Hz rTMS was directly applied to MCAO rats to verify the rTMS effects on astrocytic polarization.
Results
Among these three frequencies, the 10 Hz protocol exerted the greatest potential to modulate astrocytic polarization after OGD/R injury. Classically activated and A1 markers were significantly inhibited by rTMS treatment. In OGD/R model, the concentration of pro-inflammatory mediator TNF-α decreased from 57.7 to 23.0 рg/mL, while anti-inflammatory mediator IL-10 increased from 99.0 to 555.1 рg/mL in the ACM after rTMS treatment. The ACM collected from rTMS-treated astrocytes significantly alleviated neuronal apoptosis induced by OGD/R injury, and promoted neuronal plasticity. In MCAO rat model, the ACM collected from rTMS treatment decreased neuronal apoptosis and infarct volumes, and improved cognitive functions. The neurotoxic astrocytes were simultaneously inhibited after rTMS treatment.
Conclusion
Inhibition of neurotoxic astrocytic polarization is a potential mechanism for the effectiveness of high-frequency rTMS in cerebral ischemic stroke.
Journal Article
An Appetite for Destruction: Detecting Prey-Selective Binding of alpha-Neurotoxins in the Venom of Afro-Asian Elapids
by
Zdenek, Christina N
,
Harrich, David
,
Fry, Bryan G
in
Elapids
,
Neurotoxic agents
,
Physiological aspects
2020
Prey-selective venoms and toxins have been documented across only a few species of snakes. The lack of research in this area has been due to the absence of suitably flexible testing platforms. In order to test more species for prey specificity of their venom, we used an innovative taxonomically flexible, high-throughput biolayer interferometry approach to ascertain the relative binding of 29 [alpha]-neurotoxic venoms from African and Asian elapid representatives (26 Naja spp., Aspidelaps scutatus, Elapsoidea boulengeri, and four locales of Ophiophagus hannah) to the alpha-1 nicotinic acetylcholine receptor orthosteric (active) site for amphibian, lizard, snake, bird, and rodent targets. Our results detected prey-selective, intraspecific, and geographical differences of a-neurotoxic binding. The results also suggest that crude venom that shows prey selectivity is likely driven by the proportions of prey-specific a-neurotoxins with differential selectivity within the crude venom. Our results also suggest that since the a-neurotoxic prey targeting does not always account for the full dietary breadth of a species, other toxin classes with a different pathophysiological function likely play an equally important role in prey immobilisation of the crude venom depending on the prey type envenomated. The use of this innovative and taxonomically flexible diverse assay in functional venom testing can be key in attempting to understanding the evolution and ecology of a-neurotoxic snake venoms, as well as opening up biochemical and pharmacological avenues to explore other venom effects.
Journal Article