Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,026 result(s) for "Neutralization"
Sort by:
Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
Standardization, validation, and comparative evaluation of a convenient surrogate recombinant vesicular stomatitis virus plaque reduction test for quantification of Hantaan orthohantavirus (HTNV) neutralizing antibodies
Hantaan orthohantavirus (HTNV) is responsible for severe hemorrhagic fever with renal syndrome (HFRS), which has a case fatality rate of 1% to 10%. Currently, the inactive vaccine licensed in endemic areas elicit low levels of neutralizing antibodies (NAbs). Early NAbs administration is helpful for patients recovery from HFRS. Therefore, measuring NAbs is crucial for evaluating the immune response following infection or vaccination. The golden standard for HTNV NAbs measurement is the focus reduction neutralization test (FRNT), which typically requires skilled technicians and is performed under high biosafety containment facility. Here, we established a surrogate NAbs titration method with replication-competent vesicular stomatitis virus (VSV) bearing HTNV glycoprotein (rVSV-HTNV-GP) based plaque reduction neutralization test (PRNT). Then compared and correlated this method with the authentic HTNV based FRNT, and applied it to measure the NAbs level in 47 serum samples from HFRS patients, healthy donors and inactive vaccine recipients. We observed positive correlations between two neutralization assays among HFRS patients and inactive vaccine recipients (R2 = 0.5994 and 0.3440, respectively) and confirmed the clear specificity with healthy donors without vaccinated and reproducibility with three more assays. Our results suggest that rVSV-HTNV-GP based PRNT is a reliable lower-biosafety level surrogate for HTNV NAbs evaluation, which is easy to perform with higher sensitivity.
Accuracy and efficacy of pre-dengue vaccination screening for previous dengue infection with five commercially available immunoassays: a retrospective analysis of phase 3 efficacy trials
The tetravalent dengue vaccine (CYD-TDV) has been shown to provide protection against dengue disease over 5-year follow-up in participants with previous dengue infection, but increased the risk of dengue hospitalisation and severe dengue during long-term follow-up in those without previous dengue infection. WHO recommended pre-vaccination screening to identify those with previous dengue infection (ie, dengue seropositive) who would benefit from vaccination. We re-evaluated CYD-TDV efficacy in those identified as dengue seropositive using five commercially available immunoassays, and assessed immunoassay performance. We included participants in the immunogenicity subsets of the phase 3 CYD14 (NCT01373281) and CYD15 (NCT01374516) CYD-TDV efficacy trials, which enrolled children aged 2–16 years in 2011–12 in five countries in the Asia-Pacific region (CYD14) and five Latin American countries (CYD15). Participants assessed had received at least one injection of study drug (CYD-TDV or placebo) and had baseline samples available. We tested baseline samples by IgG-based immunoassays to classify baseline dengue serostatus, using two ELISAs (EUROIMMUN and Panbio) and three rapid diagnostic tests (RDTs; TELL ME FAST, SD BIOLINE, and OnSite). Vaccine efficacy in preventing symptomatic, hospitalised, and severe virologically confirmed dengue was determined for participants who tested positive by each immunoassay. The specificity and sensitivity of each immunoassay was determined as percentage negative and positive agreement compared with the reference algorithm, which used dengue plaque reduction neutralisation test with 50% and 90% cutoffs and non-structural protein 1 IgG ELISA results to assign baseline serostatus. Samples were available for 3967 participants, 2735 (69·0%) of whom were classified as seropositive by the reference algorithm. Vaccine efficacy against symptomatic virologically confirmed dengue in immunoassay-positive participants was high across all five immunoassays (EUROIMMUN ELISA 88·2% [95% CI 77·3 to 93·9], Panbio ELISA 87·6% [76·7 to 93·4], TELL ME FAST RDT 88·8% [67·0 to 96·2], SD BIOLINE RDT 82·8% [66·9 to 91·1], and OnSite RDT 89·7% [64·6 to 97·0]), as was vaccine efficacy against hospitalised virologically confirmed dengue (EUROIMMUN-ELISA 72·8% [38·9 to 87·9], Panbio ELISA 77·5% [52·8 to 89·3], TELL ME FAST RDT 92·4% [37·8 to 99·1], SD BIOLINE RDT 87·2% [54·5 to 96·4], and OnSite RDT 73·7% [–5·1 to 93·4]) and severe virologically confirmed dengue (EUROIMMUN ELISA 86·9% [–16·8 to 98·5], Panbio ELISA 91·3% [27·6 to 99·0], TELL ME FAST RDT 100·0% [not estimable to 100·0%], SD BIOLINE RDT 89·4% [9·6 to 98·8], and OnSite RDT 73·4% [–193·7 to 97·6]). The immunoassays exhibited high specificity (≥98·8% for all immunoassays apart from SD BIOLINE RDT) but variable sensitivities, with higher sensitivities observed for the ELISAs (EUROIMMUN 89·2% [87·9 to 90·3] and Panbio 92·5 [91·4 to 93·5]) than the RDTs (TELL ME FAST 52·5% [50·6 to 54·4], SD BIOLINE 71·1% [69·3 to 72·8], and OnSite 47·6% [45·7 to 49·5]). Our findings suggest that these immunoassays could be used for pre-vaccination screening for CYD-TDV as tools to assist risk stratification until more sensitive and convenient tests become available. Sanofi Pasteur.
Efficient evolution of human antibodies from general protein language models
Natural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could guide artificial evolution. Here we report that general protein language models can efficiently evolve human antibodies by suggesting mutations that are evolutionarily plausible, despite providing the model with no information about the target antigen, binding specificity or protein structure. We performed language-model-guided affinity maturation of seven antibodies, screening 20 or fewer variants of each antibody across only two rounds of laboratory evolution, and improved the binding affinities of four clinically relevant, highly mature antibodies up to sevenfold and three unmatured antibodies up to 160-fold, with many designs also demonstrating favorable thermostability and viral neutralization activity against Ebola and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, including antibiotic resistance and enzyme activity, suggesting that these results generalize to many settings. A general protein language model guides protein evolution with 20 or fewer variants needed for testing.
Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization
The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections 1 . Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches. Plasma from individuals vaccinated with BNT162b2 exhibits 22-fold less neutralization capacity against Omicron (B.1.1.529) than against an ancestral SARS-CoV-2 strain but residual neutralization is maintained in those with high levels of neutralization of ancestral virus.
Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera
We engineered three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion + N501Y + D614G from UK; and E484K + N501Y + D614G from SA. Neutralization geometric mean titers (GMTs) of 20 BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses. Human sera from recipients of the BNT162b2 vaccine can neutralize SARS-CoV-2 viruses containing spike mutations present in globally circulating variants of concern.
Highly active engineered IgG3 antibodies against SARS-CoV-2
Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.
Establishment of the first WHO International Standard for antiserum to Respiratory Syncytial Virus: Report of an international collaborative study
Respiratory Syncytial Virus (RSV), a leading cause of lower respiratory tract illness, has been a focus of vaccine development efforts in recent years. RSV neutralisation assays are particularly useful in the evaluation of immunogenicity of RSV vaccine candidates. Here we report a collaborative study that was conducted with the aim to establish the 1st International Standard for antiserum to RSV, to enable the standardisation of results across multiple assay formats. Two candidate standards were produced from serum samples donated by healthy adult individuals. 25 laboratories from 12 countries, including university laboratories, manufacturers/developers of RSV vaccines and public health laboratories, participated in the study. The study samples comprised the two candidate standards, NIBSC codes 16/284 and 16/322, naturally infected adult sera, age stratified naturally infected paediatric sera, sera from RSV vaccine clinical trials in maternal and elderly subjects, a monoclonal antibody to RSV (palivizumab), two cotton rat serum samples and samples from the BEI Resources panel of human antiserum and immune globulin to RSV. The collaborative study showed that between-laboratory variability in neutralisation titres was substantially reduced when values were expressed relative to those of either of the two candidate international standards. Stability of 16/284 and 16/322 maintained for 6 months at different temperatures showed no significant loss of activity (relative to that at −20 °C storage temperature) at temperatures of up to +20 °C. Based on these results, 16/284 was established as the 1st International Standard for antiserum to RSV, with an assigned unitage of 1000 International Units (IU) of anti-RSV neutralising antibodies per vial, by the WHO Expert Committee on Biological Standardisation, with 16/322 suitable as a possible replacement standard for 16/284.
BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage 1 . The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles 2 , epitope distribution 3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab 4 and cilgavimab 5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants. Biochemical and structural studies of the interactions between antibodies and spike proteins from SARS-CoV-2 Omicron subvariants indicate how these variants have evolved to escape antibody-mediated neutralization.