Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23,212 result(s) for "New family"
Sort by:
Catching a Case
Influenced by news reports of young children brutalized by their parents, most of us see the role of child services as the prevention of severe physical abuse. But as Tina Lee shows inCatching a Case, most child welfare cases revolve around often ill-founded charges of neglect, and the parents swept into the system are generally struggling but loving, fighting to raise their children in the face of crushing poverty, violent crime, poor housing, lack of childcare, and failing schools. Lee explored the child welfare system in New York City, observing family courts, interviewing parents and following them through the system, asking caseworkers for descriptions of their work and their decision-making processes, and discussing cases with attorneys on all sides. What she discovered about the system is troubling. Lee reveals that, in the face of draconian budget cuts and a political climate that blames the poor for their own poverty, child welfare practices have become punitive, focused on removing children from their families and on parental compliance with rules. Rather than provide needed help for families, case workers often hold parents to standards almost impossible for working-class and poor parents to meet. For instance, parents can be accused of neglect for providing inadequate childcare or housing even when they cannot afford anything better. In many cases, child welfare exacerbates family problems and sometimes drives parents further into poverty while the family court system does little to protect their rights. Catching a Caseis a much-needed wake-up call to improve the child welfare system, and to offer more comprehensive social services that will allow all children to thrive.
Taxonomy of the order Bunyavirales: update 2019
In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Taxonomy of the order Mononegavirales: second update 2018
In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Taxonomy of the order Bunyavirales: second update 2018
In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Taxonomy and phylogeny of operculate discomycetes: Pezizomycetes
The class Pezizomycetes is monophyletic within the subdivision Pezizomycotina. The main distinguishing character of this class is operculate asci, although in some taxa this character has been lost. The circumscription of the families and generic level delimitation in Pezizomycetes is still controversial, although several molecular phylogenetic studies have been published on this group. This paper reviews 21 families of Pezizomycetes including five new families, which are introduced here, viz. Kallistoskyphaceae, Pseudombrophilaceae, Pulvinulaceae, Strobiloscyphaceae and Tarzettaceae. Moreover, this study provides a modified backbone tree based on phylogenetic analysis of five combined loci. Descriptions and illustrations of representative taxa for the families are provided from collections made in China, Thailand and the UK, herbarium material from international herbaria (FH, FLAS, H, HKAS and MA) and the literature. Pezizales separates into six major clades. Clade 1 of Pezizales includes the families Ascobolaceae and Pezizaceae. Clade 2 is the new family Kallistoskyphaceae. Clade 3 comprises the families Caloscyphaceae, Karstenellaceae and Rhizinaceae. Clade 4 represents the families Discinaceae, Helvellaceae, Morchellaceae, Tuberaceae and Underwoodia columnaris lineage. Clade 5 includes Chorioactidaceae, Sarcoscyphaceae and Sarcosomataceae and Clade 6 comprises Ascodesmidaceae, Glaziellaceae, Otideaceae, Pseudombrophilaceae, Pulvinulaceae, Pyronemataceae, Strobiloscyphaceae and Tarzettaceae. New sequence data belonging to ITS, LSU, SSU, TEF, RPB2 gene regions from 40 pezizalian species are provided here. The paper provides a working document for apothecial Pezizomycetes which can be modified as new data comes to light. It is hoped that by illustrating taxa we provide stimulation and interest in the operculate discomycetes, so that further research is carried out on this remarkable, but poorly studied group of fungi.
Proposal of a new family Pseudodiploösporeaceae fam. nov. (Hypocreales) based on phylogeny of Diploöspora longispora and Paecilomyces penicillatus
During a field survey of cultivated Morchella mushroom diseases, Diploöspora longispora and Paecilomyces penicillatus, causal agents of pileus rot or white mould disease were detected, which resulted in up to 80% of yield losses. Multi-locus phylogenic analysis revealed that the fungi were affiliated in a distinct clade in Hypocreales. We further constructed a phylogenetic tree with broader sampling in Hypocreales and estimated the divergence times. The D. longispora and P. penicillatus clades were estimated to have diverged from Hypocreaceae around 129 MYA and Pseudodiploösporeaceae fam. nov is herein proposed to accommodate species in this clade. Two new genera, i.e. Pseudodiploöspora and Zelopaecilomyceswere, were introduced based on morphological characteristics and phylogenic relationships of Diploöspora longispora and Paecilomyces penicillatus, respectively. Five new combinations - Pseudodiploöspora cubensis, P. longispora, P. fungicola, P. zinniae, and Zelopaecilomyces penicillatus - were proposed.
Religion and family in a changing society
The 1950s religious boom was organized around the male-breadwinner lifestyle in the burgeoning postwar suburbs. But since the 1950s, family life has been fundamentally reconfigured in the United States. How do religion and family fit together today? This book examines how religious congregations in America have responded to changes in family structure, and how families participate in local religious life. Based on a study of congregations and community residents in upstate New York, sociologist Penny Edgell argues that while some religious groups may be nostalgic for the Ozzie and Harriet days, others are changing, knowing that fewer and fewer families fit this traditional pattern. In order to keep members with nontraditional family arrangements within the congregation, these innovators have sought to emphasize individual freedom and personal spirituality and actively to welcome single adults and those from nontraditional families. Edgell shows that mothers and fathers seek involvement in congregations for different reasons. Men tend to think of congregations as social support structures, and to get involved as a means of participating in the lives of their children. Women, by contrast, are more often motivated by the quest for religious experience, and can adapt more readily to pluralist ideas about family structure. This, Edgell concludes, may explain the attraction of men to more conservative congregations, and women to nontraditional religious groups.
Virus classification – where do you draw the line?
High-throughput sequencing (HTS) and its use in recovering and assembling novel virus sequences from environmental, human clinical, veterinary and plant samples has unearthed a vast new catalogue of viruses. Their classification, known by their sequences alone, sets a major challenge to traditional virus taxonomy, especially at the family and species levels, which have been historically based largely on descriptive taxon definitions. These typically entail some knowledge of their phenotypic properties, including replication strategies, virion structure and clinical and epidemiological features, such as host range, geographical distribution and disease outcomes. Little to no information on these attributes is available, however, for viruses identified in metagenomic datasets. If such viruses are to be included in virus taxonomy, their assignments will have to be guided largely or entirely by metrics of genetic relatedness. The immediate problem here is that the International Committee on Taxonomy of Viruses (ICTV), an organisation that authorises the taxonomic classification of viruses, provides little or no guidance on how similar or how divergent viruses must be in order to be considered members of new species or new families. We have recently developed a method for scoring genomic (dis)similarity between viruses (Genome Relationships Applied to Virus Taxonomy – GRAViTy) among the eukaryotic and prokaryotic viruses currently classified by the ICTV. At the family and genus levels, we found large-scale consistency between genetic relationships and their taxonomic assignments for eukaryotic viruses of all genome configurations and genome sizes. Family assignments of prokaryotic viruses have, however, been made at a quite different genetic level, and groupings currently classified as sub-families are a much better match to the eukaryotic virus family level. These findings support the ongoing reorganisation of bacteriophage taxonomy by the ICTV Phage Study Group. A rapid and objective means to explore metagenomic viral diversity and make evidence-based assignments for such viruses at each taxonomic layer is essential. Analysis of sequences by GRAViTy provides evidence that family (and genus) assignments of currently classified viruses are largely underpinned by genomic relatedness, and these features could serve as a guide towards an evidence-based classification of metagenomic viruses in the future.
Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera
The genus Mycoplasma, including species earlier classified in the genera Eperythrozoon and Haemobartonella, contains ~ 120 species and constitutes an extensively polyphyletic assemblage of bacteria within the phylum Tenericutes. Due to their small genome sizes and lack of unique characteristics, the relationships among the mycoplasmas/Tenericutes are not reliably discerned. Using genome sequences for 140 Tenericutes, their evolutionary relationships were examined using multiple independent approaches. Phylogenomic trees were constructed for 63 conserved proteins, 45 ribosomal proteins, three main subunits of RNA polymerase and 16S rRNA gene sequences. In all of these trees, Tenericutes species reliably grouped into four main clades designated as the “Acholeplasma”, “Spiroplasma”, “Pneumoniae” and “Hominis” clusters. These clades are also distinguished based on a similarity matrix constructed based on 16S rRNA gene sequences. Mycoplasma species were dispersed across 3 of these 4 clades highlighting their extensive polyphyly. In parallel, our comparative genomic analyses have identified > 100 conserved signature indels (CSIs) and 14 conserved signature proteins (CSPs), which are uniquely shared by the members of four identified clades, strongly supporting their monophyly and identifying them in molecular terms. Mycoplasma mycoides, the type species of the genus Mycoplasma, and a small number of other Mycoplasma species, formed a strongly supported clade within the “Spiroplasma” cluster. Nine CSIs and 14 CSPs reliably distinguish this clade from all other Mycoplasmatales species. The remainder of the Mycoplasmatales species are part of the “Pneumoniae” and “Hominis” clusters, which group together in phylogenetic trees. Here we are proposing that the order Mycoplasmatales should be emended to encompass only the Mycoplasma species within the “Spiroplasma” cluster and that a new order, Mycoplasmoidales ord. nov., should be created to encompass the other Mycoplasma species. The “Pneumoniae” and the “Hominis” clusters are proposed as two new families, Mycoplasmoidaceae fam. nov., which includes the genera Eperythrozoon, Ureaplasma, and the newly proposed genera Malacoplasma and Mycoplasmoides, and Metamycoplasmataceae fam. nov. to contain the newly proposed genera Metamycoplasma, Mycoplasmopsis, and Mesomycoplasma. The results presented here allow reliable discernment, both in phylogenetic and molecular terms, of the members of the two proposed families as well as different described genera within these families including members of the genus Eperythrozoon, which is comprised of uncultivable organisms. The taxonomic reclassifications proposed here, which more accurately portray the genetic diversity among the Tenericutes/Mycoplasma species, provide a new framework for understanding the biological and clinical aspects of these important microbes.
Towards a natural classification of Annulatascaceae-like taxa: introducing Atractosporales ord. nov. and six new families
Species with relatively small, membraneous, black ascomata, with or without long necks, unitunicate, cylindrical asci with apical rings and fusiform, hyaline ascospores with or without mucilaginous sheaths are common in freshwater habitats in tropical and temperate regions. Many of these taxa have originally been recorded as Annulatascaceae -like taxa. Twenty genera have been included in the family Annulatascaceae , mostly based on morphological characters, while molecular work and phylogenetic analyses are lacking for many genera. In this study, nine new Annulatascaceae -like taxa collected from Thailand were morphologically examined. Pure cultures obtained from single ascospores were used in molecular studies. The nine new strains and several other strains of Annulatascaceae-like Sordariomycetes species were used to establish phylogenetic and evolution relationships among the taxa, based on combined LSU, SSU, ITS and RPB2 sequence data. Phylogenetic analyses provide evidence to introduce one new order and six new families, to accommodate taxa excluded from Annulatascaceae sensu stricto. A new order Atractosporales is established based on the molecular study, including three new introduced families Conlariaceae , Pseudoproboscisporaceae and Atractosporaceae . Conlariaceae is introduced for the genus Conlarium which comprises two species, Conlarium duplumascosporun and a new Hyphomycetous asexual morph taxon Conlarium aquaticum which has subglobose or irregular, brown, clathrate, muriform conidia. Pseudoproboscisporaceae includes Pseudoproboscispora and Diluviicola , while Atractosporaceae includes the genera Rubellisphaeria and Atractospora. Barbatosphaeria , Xylomelasma and Ceratostomella form a distinct stable lineage which is introduced as a new family Barbatosphaeriaceae in Diaporthomycetidae families incertae sedis. A new family Lentomitellaceae is introduced in Diaporthomycetidae families incertae sedis , to accommodate the genus Lentomitella. Woswasiaceae is introduced to accommodate Woswasia , Xylochrysis and Cyanoannulus in Diaporthomycetidae families incertae sedis . Three new species of Fluminicola viz. F. saprophytica , F. thailandensis and F. aquatica are introduced. A new sexual morph, Dictyosporella thailandensis, is reported and Dictyosporella is excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis . The first sexual morph of Sporidesmium , S. thailandense is also described. The new species Atractospora thailandensis , Diluviicola aquatica and Pseudoproboscispora thailandensis are also introduced. Platytrachelon is added to Papulosaceae based on phylogenetic analysis and morphological characters. Aquaticola , Fusoidispora and Pseudoannulatascus are excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis . Mirannulata is accommodated in Sordariomycetes, genera incertae sedis .