Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
53,418 result(s) for "Newts"
Sort by:
Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader
Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris , at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.
Newt decline in Western Europe: highlights from relative distribution changes within guilds
The recent increase in the number of monitoring schemes has formed the basis for high quality distribution atlases. This provides the opportunity of estimating global and specific decline patterns across regional and national borders. In this framework, this study focused on four sympatric newt species—including the great crested newt ( Triturus cristatus ), an Annex 2 European Habitats Directive species, over six geographic areas (five countries) in Western Europe. A relative comparison of distribution maps across time is used here and is based on more than twelve thousands occupied grid cells. It benefits from the definition of a guild, as these species are simultaneously detectable in wetlands. T. cristatus and the alpine newt ( Mesotriton alpestris ) were the most and the least threatened newt species, respectively, whereas the palmate ( Lissotriton helveticus ) and smooth newt ( Lissotriton vulgaris ) had an intermediate decline level at both coarse and fine grain resolutions. However, regional variations across Europe and scale effects were also found. On one hand, these results show that T. cristatus is not only regionally threatened but suffers from a global decline in Western Europe. On another hand, the results indicate that patterns of decline are not uniform within Europe and that species often considered as common and not threatened are, in fact, declining more than others. Finally, the proposed methodology, i.e. using guilds to assess relative decline, would be useful as a complement to other standardized methods in correctly advising conservation managers and policy makers, particularly for species with more subtle declines.
Traditionally managed landscapes do not prevent amphibian decline and the extinction of paedomorphosis
Eco-cultural landscapes are assumed to be favorable environments for the persistence of biodiversity, but global change may affect differently their terrestrial and aquatic components. Few long-term studies have examined how multiple, global change stressors may affect wetland biodiversity in such environments. Facultative paedomorphosis is a spectacular example of intra-specific variation, in which biphasic (metamorphosing) amphibians coexist with fully aquatic conspecifics that do not metamorphose (paedomorphs). Paedomorphosis is seriously threatened by global change stressors, but it is unknown to what extent traditional management will allow its long-term persistence. Here, we tested the effects of alien species introductions while taking into account land use and climate changes on the distribution of two polymorphic newt species (Ichthyosaura alpestris and Lissotriton graecus) in Montenegro by using a 68-yr data set and Bayesian mixed models integrating complex spatial and temporal structures. We found that, despite the persistence of natural landscapes, metamorphs dramatically declined and paedomorphs were nearly extirpated, losing 99.9% of their aquatic area of occupancy and all the major populations. Fish introduction was the main determinant of decline for both phenotypes. Climate and the presence of crayfish further contributed to the decline of metamorphs, which started later and was less dramatic than that of paedomorphs. The near extinction of paedomorphosis on a country-wide scale shows how invasive species determine broad-scale impacts, which can be even stronger than other global change stressors, and underlines the need for immediate management actions to avoid the extinction of a unique developmental process, paedomorphosis.
Newtic1 Is a Component of Globular Structures That Accumulate along the Marginal Band of Erythrocytes in the Limb Blastema of Adult Newt, ICynops pyrrhogaster/I
In adult newts, when a limb is amputated, a mesenchymal cell mass called the blastema is formed on the stump, where blood vessels filled with premature erythrocytes, named polychromatic normoblasts (PcNobs), elongate. We previously demonstrated that PcNobs in the blastema express an orphan gene, Newtic1, and that they secrete growth factors such as BMP2 and TGFβ1 into the surrounding tissues. However, the relationship between Newtic1 expression and growth factor secretion was not clear since Newtic1 was thought to encode a membrane protein. In this study, we addressed this issue using morphological techniques and found that the Newtic1 protein is a component of globular structures that accumulate at the marginal band in the cytoplasm along the equator of PcNobs. Newtic1-positive (Newtic1(+)) globular structures along the equator were found only in PcNobs with a well-developed marginal band in the blastema. Newtic1(+) globular structures were associated with microtubules and potentially incorporated TGFβ1. Based on these observations, we propose a hypothesis that the Newtic1 protein localizes to the membrane of secretory vesicles that primarily carry TGFβ1 and binds to microtubules, thereby tethering secretory vesicles to microtubules and transporting them to the cell periphery as the marginal band develops.
New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology
The use of pesticides is important for growing crops and protecting human health by reducing the prevalence of targeted pest species. However, less attention is given to the potential unintended effects on nontarget species, including taxonomic groups that are of current conservation concern. One issue raised in recent years is the potential for pesticides to become more lethal in the presence of predatory cues, a phenomenon observed thus far only in the laboratory. A second issue is whether pesticides can induce unintended trait changes in nontarget species, particularly trait changes that might mimic adaptive responses to natural environmental stressors. Using outdoor mesocosms, I created simple wetland communities containing leaf litter, algae, zooplankton, and three species of tadpoles (wood frogs [ Rana sylvatica or Lithobates sylvaticus ], leopard frogs [ R. pipiens or L. pipiens ], and American toads [ Bufo americanus or Anaxyrus americanus ]). I exposed the communities to a factorial combination of environmentally relevant herbicide concentrations (0, 1, 2, or 3 mg acid equivalents [a.e.]/L of Roundup Original MAX) crossed with three predator-cue treatments (no predators, adult newts [ Notophthalmus viridescens ], or larval dragonflies [ Anax junius ]). Without predator cues, mortality rates from Roundup were consistent with past studies. Combined with cues from the most risky predator (i.e., dragonflies), Roundup became less lethal (in direct contrast to past laboratory studies). This reduction in mortality was likely caused by the herbicide stratifying in the water column and predator cues scaring the tadpoles down to the benthos where herbicide concentrations were lower. Even more striking was the discovery that Roundup induced morphological changes in the tadpoles. In wood frog and leopard frog tadpoles, Roundup induced relatively deeper tails in the same direction and of the same magnitude as the adaptive changes induced by dragonfly cues. To my knowledge, this is the first study to show that a pesticide can induce morphological changes in a vertebrate. Moreover, the data suggest that the herbicide might be activating the tadpoles' developmental pathways used for antipredator responses. Collectively, these discoveries suggest that the world's most widely applied herbicide may have much further-reaching effects on nontarget species than previous considered.
A new species of the newt genus Hypselotriton (Amphibia, Urodela, Salamandridae) from Jiangxi Province, southeastern China
A new newt species, Hypselotriton huanggangensis sp. nov. , is described based on nine specimens collected from Huanggangshan Mountains, Yanshan County, Jiangxi, China. Morphologically, the new species is characterized by the combination of nine external characters: (1) obvious black patches with clear boundaries on the whole body; (2) ground color of the dorsal body tan; (3) ground color of venter bright orange; (4) skin rough; (5) vertebral ridge weak; (6) fingers and toes overlapping when forelimb and hindlimb adpressed towards each other along body; (7) postocular orange spot absent; (8) small white warty glands around the eye; (9) two discontinuous longitudinal lines formed by white warty glands from neck to lateral parts of tail. Molecularly, the new species forms an independent clade with strong support in the phylogenetic trees of the genus based on the mitochondrial locus of NADH dehydrogenase subunit 2 (ND2) gene fragments. The new species distinctly differs from H. fudingensis by differences in its body measurements, vertebral ridge, dorsal black patches, and ventral black patches. Furthermore, the new species and H. fudingensis are geographically isolated by a series of high mountain ranges, including the Wuyishan and Jiufengshan Mountains. The number of Hypselotriton species is now 11.
Recent introduction of a chytrid fungus endangers Western Palearctic salamanders
Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss.
Heterochrony in a complex world: disentangling environmental processes of facultative paedomorphosis in an amphibian
Heterochrony, the change in the rate or timing of development between ancestors and their descendants, plays a major role in evolution. When heterochrony produces polymorphisms, it offers the possibility to test hypotheses that could explain its success across environments. Amphibians are particularly suitable to exploring these questions because they express complex life cycles (i.e. metamorphosis) that have been disrupted by heterochronic processes (paedomorphosis: retention of larval traits in adults). The large phenotypic variation across populations suggests that more complex processes than expected are operating, but they remain to be investigated through multivariate analyses over a large range of natural populations across time. In this study, we compared the likelihood of multiple potential environmental determinants of heterochrony. We gathered data on the proportion of paedomorphic and metamorphic palmate newts (Lissotriton helveticus) across more than 150 populations during 10 years and used an information‐theoretic approach to compare the support of multiple potential processes. Six environmental processes jointly explained the proportion of paedomorphs in populations: predation, water availability, dispersal limitation, aquatic breathing, terrestrial habitat suitability and antipredator refuges. Analyses of variation across space and time supported models based on the advantage of paedomorphosis in favourable aquatic habitats. Paedomorphs were favoured in deep ponds, in conditions favourable to aquatic breathing (high oxygen content), with lack of fish and surrounded by suitable terrestrial habitat. Metamorphs were favoured by banks allowing easy dispersal. These results indicate that heterochrony relies on complex processes involving multiple ecological variables and exemplifies why heterochronic patterns occur in contrasted environments. On the other hand, the fast selection of alternative morphs shows that metamorphosis and paedomorphosis developmental modes could be easily disrupted in natural populations.
Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling
INTRODUCTION: The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. RESULTS: We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. CONCLUSIONS: The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges.
Adaptive evolution of voltage-gated sodium channels: The first 800 million years
Voltage-gated Na ⁺-permeable (Nav) channels form the basis for electrical excitability in animals. Nav channels evolved from Ca ²⁺ channels and were present in the common ancestor of choanoflagellates and animals, although this channel was likely permeable to both Na ⁺ and Ca ²⁺. Thus, like many other neuronal channels and receptors, Nav channels predated neurons. Invertebrates possess two Nav channels (Nav1 and Nav2), whereas vertebrate Nav channels are of the Nav1 family. Approximately 500 Mya in early chordates Nav channels evolved a motif that allowed them to cluster at axon initial segments, 50 million years later with the evolution of myelin, Nav channels “capitalized” on this property and clustered at nodes of Ranvier. The enhancement of conduction velocity along with the evolution of jaws likely made early gnathostomes fierce predators and the dominant vertebrates in the ocean. Later in vertebrate evolution, the Nav channel gene family expanded in parallel in tetrapods and teleosts (∼9 to 10 genes in amniotes, 8 in teleosts). This expansion occurred during or after the late Devonian extinction, when teleosts and tetrapods each diversified in their respective habitats, and coincided with an increase in the number of telencephalic nuclei in both groups. The expansion of Nav channels may have allowed for more sophisticated neural computation and tailoring of Nav channel kinetics with potassium channel kinetics to enhance energy savings. Nav channels show adaptive sequence evolution for increasing diversity in communication signals (electric fish), in protection against lethal Nav channel toxins (snakes, newts, pufferfish, insects), and in specialized habitats (naked mole rats).