Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Nile River Watershed Region"
Sort by:
Water resources and inter-riparian relations in the Nile basin
Human demand for water resources is rising at an alarming rate in response to rapid population growth, rival development requirements, and the depletion of ecological resources. In this book, Okbazghi Yohannes examines the various facets of the competition for water resources among the ten Nile River Basin countries as they compete to harness the river's resources for purposes of irrigation-based agriculture and hydropower-based industrialization. Through a careful investigation of the rival states' strategies to capture greater shares of water resources, Yohannes assesses the lasting impact on the watershed ecology in the basin and on the hydrological demand of the river itself. He proposes the formation of a radically different water regime to address the looming demographic crisis, the stark regional food insecurity, and the region's collapsing hydro-ecology. This book shows how the effort to construct a regional water regime cannot be separated from the necessity to construct an ecologically sustainable internal water regime in each co-basin state, particularly in terms of ecological resources conservation and ecosystem services protection.
Water resources and inter-riparian relations in the Nile basin : the search for an integrative discourse / Okbazghi Yohannes
\"Human demand for water resources is rising at an alarming rate in response to rapid population growth, rival development requirements, and the depletion of ecological resources. In this book, Okbazghi Yohannes examines the various facets of the competition for water resources among the ten Nile River Basin countries as they compete to harness the river's resources for purposes of irrigation-based agriculture and hydropower-based industrialization.\"--Jacket.
Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence
Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ 18 O, δ 2 H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.
Deltas in Arid Environments
Due to increasing water use, diversion and salinization, along with subsidence and sea-level rise, deltas in arid regions are shrinking worldwide. Some of the most ecologically important arid deltas include the Colorado, Indus, Nile, and Tigris-Euphrates. The primary stressors vary globally, but these deltas are threatened by increased salinization, water storage and diversion, eutrophication, and wetland loss. In order to make these deltas sustainable over time, some water flow, including seasonal flooding, needs to be re-established. Positive impacts have been seen in the Colorado River delta after flows to the delta were increased. In addition to increasing freshwater flow, collaboration among stakeholders and active management are necessary. For the Nile River, cooperation among different nations in the Nile drainage basin is important. River flow into the Tigris-Euphrates River delta has been affected by politics and civil strife in the Middle East, but some flow has been re-allocated to the delta. Studies commissioned for the Indus River delta recommended re-establishment of some monthly water flow to maintain the river channel and to fight saltwater intrusion. However, accelerating climate impacts, socio-political conflicts, and growing populations suggest a dire future for arid deltas.
Sediment Fingerprinting Enables the Determination of Soil Erosion Sources and Sediment Transport Processes in a Topographically Complex Nile Headwater Basin
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used to identify erosional hotspots and sediment transport processes in highly mountainous regions undergoing swift land use transformation. This technique involves a statistical comparison of the elemental composition of suspended sediments in river water with the elemental composition of soils belonging to different geological formations present in the catchment, thereby determining the sources of the suspended sediment. Suspended sediments were sampled five times over dry and wet seasons in all major headwater tributaries, as well as the main river channel, and compared with soils from respective delineated watersheds. Elemental composition was obtained using laser ablation inductively coupled plasma mass spectrometry, and elements were chosen that could reliably distinguish between the various geological types. The final results indicate different levels of sediment contribution from different geological types. A three-level intervention priority system was devised, with Level 1 indicating the areas with the most serious erosion. Potential sources were located on an administrative map, with the highest likely erosion over the study period (Level 1) occurring in Kabuga cell in the Mwogo sub-catchment, Nganzo and Nyamirama cells in the Nyagako sub-catchment and Kanyana cell in the NNYU downstream sub-catchment. This map enables the pinpointing of site visits in an extensive and rugged terrain to verify the areas and causes of erosion and the pathways of sediment transport. Sediment concentrations (mg L−1) were the highest in the Secoko and Satinsyi tributaries. The composition of suspended sediment was seen to be temporally and spatially dynamic at each sampling point, suggesting the need for an adequate number of sampling locations to identify erosion hotspots in a large mountainous watershed. Apart from prioritizing rehabilitation locations, the detailed understanding of critical zone soil–land cover–climate processes is an important input for developing region-specific watershed management and policy guidelines.
Spatio-temporal spillover risk of yellow fever in Brazil
Background Yellow fever virus is a mosquito-borne flavivirus that persists in an enzoonotic cycle in non-human primates (NHPs) in Brazil, causing disease in humans through spillover events. Yellow fever (YF) re-emerged in the early 2000s, spreading from the Amazon River basin towards the previously considered low-risk, southeastern region of the country. Previous methods mapping YF spillover risk do not incorporate the temporal dynamics and ecological context of the disease, and are therefore unable to predict seasonality in spatial risk across Brazil. We present the results of a bagged logistic regression predicting the propensity for YF spillover per municipality (administrative sub-district) in Brazil from environmental and demographic covariates aggregated by month. Ecological context was incorporated by creating National and Regional models of spillover dynamics, where the Regional model consisted of two separate models determined by the regions’ NHP reservoir species richness (high vs low). Results Of the 5560 municipalities, 82 reported YF cases from 2001 to 2013. Model accuracy was high for the National and low reservoir richness (LRR) models (AUC = 0.80), while the high reservoir richness (HRR) model accuracy was lower (AUC = 0.63). The National model predicted consistently high spillover risk in the Amazon, while the Regional model predicted strong seasonality in spillover risk. Within the Regional model, seasonality of spillover risk in the HRR region was asynchronous to the LRR region. However, the observed seasonality of spillover risk in the LRR Regional model mirrored the national model predictions. Conclusions The predicted risk of YF spillover varies with space and time. Seasonal trends differ between regions indicating, at times, spillover risk can be higher in the urban coastal regions than the Amazon River basin which is counterintuitive based on current YF risk maps. Understanding the spatio-temporal patterns of YF spillover risk could better inform allocation of public health services.
Cross-Comparison of Climate Change adaptation Strategies Across Large River Basins in Europe, Africa and Asia
A cross-comparison of climate change adaptation strategies across regions was performed, considering six large river basins as case study areas. Three of the basins, namely the Elbe, Guadiana, and Rhine, are located in Europe, the Nile Equatorial Lakes region and the Orange basin are in Africa, and the Amudarya basin is in Central Asia. The evaluation was based mainly on the opinions of policy makers and water management experts in the river basins. The adaptation strategies were evaluated considering the following issues: expected climate change, expected climate change impacts, drivers for development of adaptation strategy, barriers for adaptation, state of the implementation of a range of water management measures, and status of adaptation strategy implementation. The analysis of responses and cross-comparison were performed with rating the responses where possible. According to the expert opinions, there is an understanding in all six regions that climate change is happening. Different climate change impacts are expected in the basins, whereas decreasing annual water availability, and increasing frequency and intensity of droughts (and to a lesser extent floods) are expected in all of them. According to the responses, the two most important drivers for development of adaptation strategy are: climate-related disasters, and national and international policies. The following most important barriers for adaptation to climate change were identified by responders: spatial and temporal uncertainties in climate projections, lack of adequate financial resources, and lack of horizontal cooperation. The evaluated water resources management measures are on a relatively high level in the Elbe and Rhine basins, followed by the Orange and Guadiana. It is lower in the Amudarya basin, and the lowest in the NEL region, where many measures are only at the planning stage. Regarding the level of adaptation strategy implementation, it can be concluded that the adaptation to climate change has started in all basins, but progresses rather slowly.
Investigation of flow-rainfall co-variation for catchments selected based on the two main sources of River Nile
The co-variation of rainfall and flow was assessed in four selected catchments of the River Nile which has two main sources including the White Nile (in the Equatorial region) and the Blue Nile (from the Ethiopian highlands). The selected catchments included Kyoga and Kagera (from the Equatorial region), as well as Blue Nile and Atbara (in Sudan and Ethiopia). In each catchment, the flow-rainfall co-variation was investigated at both seasonal and annual time scales. To explain aggregated variation at larger temporal scale while investigating the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, rainfall-runoff modeling was done at daily time scale using data (falling within the period 1949–2003) from Kagera and Blue Nile i.e. the major catchment of each region where the River Nile emanates. Correlation analysis was conducted to assess how well the variation of flow and that of catchment-wide rainfall resonate. The co-occurrence of the changes in observed and simulated overland flow was examined using the quantile perturbation method (QPM). Trends in the model residuals were detected using the Mann–Kendal (MK) and cumulative rank difference (CRD) tests. The null hypothesis H0 (no correlation between rainfall and flow) was rejected at the significance level α of 5% for all the selected catchments. The temporal changes in terms of the QPM anomalies for both the observed and simulated flow were in a close agreement. The evidence to reject the H0 (no trend in the model residuals) was generally statistically insufficient at α = 5% for all the models and selected catchments considering both the MK and CRD tests. These results indicate that change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal. Thus, the overall rainfall-runoff generation processes of the catchments did not change in a significant way over the selected data period. The temporal flow variation could be attributed mainly to the rainfall variation.
Economic and hydrological impacts of the Grand Ethiopian Renaissance Dam on the Eastern Nile River Basin
We propose an ‘allocate-and-trade’ institution to manage the eastern Nile River Basin for Ethiopia, Sudan and Egypt as the basin faces a new reality of the Grand Ethiopian Renaissance Dam (GERD). We find that a social planner could increase the region's economic welfare by assigning water rights to the riparian states. An alternative intrabasin water rights arrangement and trade could achieve more than 95 per cent of the welfare created by the social planner. GERD will change both the economic benefits and hydrological positions of the riparian countries. Economic benefits from alternative water use would be sufficient to make riparian countries better off compared with the status quo. Furthermore, riparian countries could raise more than US$680 m annually for protecting and conserving the natural resources of the region.
The Impact of Humans on Strata Formation Along Mediterranean Margins
The Mediterranean and Black Seas are micro-tidal and less than 3 x 10 super(6) km super(2) and 500 km super(2) in area, respectively. The latter is connected to the Mediterranean Sea by the narrow Bosphorus-Dardanelles Strait. Both seas have an important continental influence because they are semi-enclosed basins with relatively large riverine sediment inputs. The most important fluvial systems flowing into the Mediterranean and Black Seas are the Ebro, Rhone, Po, Danube, and Nile Rivers. They represent the largest sediment contribution to Mediterranean margins.