Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Nipah Virus - classification"
Sort by:
Nipah virus dynamics in bats and implications for spillover to humans
Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia—one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to batpopulation turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysiaclade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus’s range.
Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Nipah Virus Detection in Pteropus hypomelanus Bats, Central Java, Indonesia
Nipah virus, a zoonotic virus with a high mortality rate, threatens people from Indonesia because of its proximity to affected regions and the presence of bat reservoirs. Molecular screening of 64 Pteropus hypomelanus bats in Central Java detected 2 positive bats. Public health authorities should increase surveillance to help prevent human transmission.
Detection of Nipah virus in Pteropus medius in 2019 outbreak from Ernakulam district, Kerala, India
Background In June 2019, Nipah virus (NiV) infection was detected in a 21-year-old male (index case) of Ernakulum, Kerala, India. This study was undertaken to determine if NiV was in circulation in Pteropus species ( spp) in those areas where the index case had visit history in 1 month. Methods Specialized techniques were used to trap the Pteropus medius bats (random sampling) in the vicinity of the index case area. Throat and rectal swabs samples of 141 bats along with visceral organs of 92 bats were collected to detect the presence of NiV by real-time reverse transcriptase-polymerase chain reaction (qRTPCR). Serum samples of 52 bats were tested for anti-NiV Immunoglobulin (Ig) G antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). The complete genome of NiV was sequenced by next-generation sequencing (NGS) from the tissues and swab samples of bats. Results One rectal swab sample and three bats visceral organs were found positive for the NiV. Interestingly, 20.68% (12/58) of Pteropus were positive for anti-NiV IgG antibodies. NiV sequences of 18,172; 17,200 and 15,100 nucleotide bps could be retrieved from three Pteropus bats. Conclusion A distinct cluster of NiV sequences, with significant net-evolutionary nucleotide divergence, was obtained, suggesting the circulation of new genotype (I-India) in South India. NiV Positivity in Pteropus spp. of bats revealed that NiV is circulating in many districts of Kerala state, and active surveillance of NiV should be immediately set up to know the hotspot area for NiV infection.
Hendra and Nipah viruses: different and dangerous
Key Points The new genus Henipavirus was created within the Paramyxovirinae subfamily of the Paramyxoviridae for the Biosafety Level 4 (BSL4) pathogens Hendra virus and Nipah virus. Both are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Although they belong to the Paramyxovirinae subfamily, henipaviruses have distinct genetic and biological properties that distinguish them from other viruses in the subfamily, including respiroviruses such as Sendai virus, rubulaviruses such as mumps virus, and morbilliviruses such as measles virus. Research on the henipaviruses has been restricted by their BSL4 categorization; however, recent results mainly obtained using henipavirus proteins expressed from cloned genes have increased our understanding of the unique properties of particular henipavirus proteins, particularly the attachment (G) protein, the fusion (F) protein and the phosphoprotein (P) gene products. Among the features that distinguish the henipaviruses from other paramyxoviruses is their extraordinarily broad host range — they naturally infect flying foxes, horses, pigs, cats, dogs and humans — and the systemic infections that they cause, displaying a tropism for arterial rather than venous endothelial cells. The recent identification of the membrane receptor for the henipavirus G protein could explain these observations. The G protein of both HeV and NiV binds to ephrin B2, a conserved cell-surface glycoprotein that is widely distributed in vertebrates and is located preferentially in arterial endothelial cells and the surrounding tunica media, but is not found in venous endothelial cells. Ephrin B2 is also found in neurons, providing an explanation for virus growth in brain tissue and the occurrence of encephalitis in human patients. The F protein is a type I membrane protein, and a biologically active form of the F protein is generated by the proteolytic cleavage of a protein precursor. It was recently found that the henipavirus F protein is cleaved by the endosomal protease cathepsin L, at a cleavage site that is unique among viral glycoproteins. The widespread distribution of the cathepsin L might also be crucial in the systemic spread of virus and the transmission of infectious virus within and between species. The paramyxovirus P gene encodes three transcripts: the P, V and W proteins, each of which has a unique C-terminal domain and, compared with morbilliviruses and rubulaviruses, an N-terminal extension of 100–200 amino acids. P-gene products allow henipaviruses to evade host antiviral defences by inhibiting both dsRNA signalling and interferon (IFN) signalling. Both the V and W proteins inhibit dsRNA signalling, but their distinct C-terminal domains enable them to do so in different cellular compartments; the W protein contains a nuclear-localization signal in the C-terminal domain. The P, V and W proteins also inhibit IFN signalling by targeting the STAT proteins in a novel strategy for paramyxoviruses that involves STATs being sequestered in high-molecular-weight complexes and, again, the W protein acts in the nucleus. The highly virulent paramyxoviruses Hendra and Nipah virus are recent additions to the gamut of emerging human pathogens. Bryan Eaton and colleagues provide an overview of these pathogens and discuss recent progress in the understanding of the molecular basis for henipavirus pathogenicity. Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
Detailed analysis of the pathologic hallmarks of Nipah virus (Malaysia) disease in the African green monkey infected by the intratracheal route
Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×10 5 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.
The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets
Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
Molecular characterization of Nipah virus from Pteropus hypomelanus in Southern Thailand
Background Nipah virus (NiV) first emerged in Malaysia in 1998, with two bat species ( Pteropus hypomelanus and P. vampyrus ) as the putative natural reservoirs. In 2002, NiV IgG antibodies were detected in these species from Thailand, but viral RNA could not be detected for strain characterization. Two strains of NiV (Malaysia and Bangladesh) have been found in P. lylei in central Thailand, although Bangladesh strain, the causative strain for the outbreak in Bangladesh since 2001, was dominant. To understand the diversity of NiV in Thailand, this study identified NiV strain, using molecular characterizations, from P. hypomelanus in southern Thailand. Findings Pooled bat urine specimens were collected from plastic sheet underneath bat roosts in April 2010, and then monthly from December 2010 to May 2011 at an island in southern Thailand. Five in 184 specimens were positive for NiV, using duplex nested RT-PCR assay on partial nucleocapsid fragment (357 bp). Whole sequences of nucleocapsid gene from four bats were characterized. All 5 partial fragments and 4 whole nucleocapsid genes formed a monophyletic with NiV-MY. Conclusions Our study showed that P. hypomelanus in southern Thailand and from Malaysia, a bordering country, harbored similar NiV. This finding indicates that NiV is not limited to central Thailand or P. lylei species, and it may be a source of inter-species transmission. This indicates a higher potential for a widespread NiV outbreak in Thailand. NiV surveillance in Pteropus bats, the major natural reservoirs, should be conducted continuously in countries or regions with high susceptibility to outbreaks.
An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections
Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness with fatality rates of 50–100%. No vaccines or licensed therapeutics currently exist to protect humans against NiV or HeV. HNVs enter host cells by fusing the viral and cellular membranes via the concerted action of the attachment (G) and fusion (F) glycoproteins, the main targets of the humoral immune response. Here, we describe the isolation and humanization of a potent monoclonal antibody cross-neutralizing NiV and HeV. Cryo-electron microscopy, triggering and fusion studies show the antibody binds to a prefusion-specific quaternary epitope, conserved in NiV F and HeV F glycoproteins, and prevents membrane fusion and viral entry. This work supports the importance of the HNV prefusion F conformation for eliciting a robust immune response and paves the way for using this antibody for prophylaxis and post-exposure therapy with NiV- and HeV-infected individuals.
Laboratory Diagnosis of Hendra and Nipah: Two Emerging Zoonotic Diseases with One Health Significance
Hendra virus (HeV) and Nipah virus (NiV) are two highly pathogenic RNA viruses with zoonotic potential, which can cause severe diseases with high mortality rates (50–100%) in humans and animals. Given this context, these viruses are classified as Biosafety Level 4 (BSL-4) pathogens, thus limiting research studies. Despite the high case fatalities, there are currently no human vaccines available for either virus, owing in part to the limitations in research and hesitancy in funding. In the absence of widespread vaccination, diagnostic tests are crucial for the rapid identification of cases and disease surveillance. This review synthesizes current knowledge on the epidemiology, transmission dynamics, and pathogenesis of NiV and HeV to contextualize a detailed assessment of the available diagnostic tools. We examined molecular and serological assays, including RT-PCR, ELISA, and LAMP, highlighting sample sources, detection windows, and performance. Diagnostic considerations across human and animal hosts are discussed, with emphasis on outbreak applicability and field-readiness, given the need for diagnostic assays that are suitable for use in low-income areas. Further development of diagnostic assays, including isothermal amplification tests and other next-generation approaches, is recommended to fill the gap in rapid, point-of-care diagnostics.