Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
653 result(s) for "Nipah virus"
Sort by:
Nipah virus dynamics in bats and implications for spillover to humans
Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia—one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to batpopulation turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysiaclade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus’s range.
Nipah Virus Detection in Pteropus hypomelanus Bats, Central Java, Indonesia
Nipah virus, a zoonotic virus with a high mortality rate, threatens people from Indonesia because of its proximity to affected regions and the presence of bat reservoirs. Molecular screening of 64 Pteropus hypomelanus bats in Central Java detected 2 positive bats. Public health authorities should increase surveillance to help prevent human transmission.
Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Prioritizing surveillance of Nipah virus in India
The 2018 outbreak of Nipah virus in Kerala, India, highlights the need for global surveillance of henipaviruses in bats, which are the reservoir hosts for this and other viruses. Nipah virus, an emerging paramyxovirus in the genus Henipavirus, causes severe disease and stuttering chains of transmission in humans and is considered a potential pandemic threat. In May 2018, an outbreak of Nipah virus began in Kerala, > 1800 km from the sites of previous outbreaks in eastern India in 2001 and 2007. Twenty-three people were infected and 21 people died (16 deaths and 18 cases were laboratory confirmed). Initial surveillance focused on insectivorous bats (Megaderma spasma), whereas follow-up surveys within Kerala found evidence of Nipah virus in fruit bats (Pteropus medius). P. medius is the confirmed host in Bangladesh and is now a confirmed host in India. However, other bat species may also serve as reservoir hosts of henipaviruses. To inform surveillance of Nipah virus in bats, we reviewed and analyzed the published records of Nipah virus surveillance globally. We applied a trait-based machine learning approach to a subset of species that occur in Asia, Australia, and Oceana. In addition to seven species in Kerala that were previously identified as Nipah virus seropositive, we identified at least four bat species that, on the basis of trait similarity with known Nipah virus-seropositive species, have a relatively high likelihood of exposure to Nipah or Nipah-like viruses in India. These machine-learning approaches provide the first step in the sequence of studies required to assess the risk of Nipah virus spillover in India. Nipah virus surveillance not only within Kerala but also elsewhere in India would benefit from a research pipeline that included surveys of known and predicted reservoirs for serological evidence of past infection with Nipah virus (or cross reacting henipaviruses). Serosurveys should then be followed by longitudinal spatial and temporal studies to detect shedding and isolate virus from species with evidence of infection. Ecological studies will then be required to understand the dynamics governing prevalence and shedding in bats and the contacts that could pose a risk to public health.
Structural basis of Nipah virus RNA synthesis
Nipah virus (NiV) is a non-segmented negative-strand RNA virus (nsNSV) with high pandemic potential, as it frequently causes zoonotic outbreaks and can be transmitted from human to human. Its RNA-dependent RNA polymerase (RdRp) complex, consisting of the L and P proteins, carries out viral genome replication and transcription and is therefore an attractive drug target. Here, we report cryo-EM structures of the NiV polymerase complex in the apo and in an early elongation state with RNA and incoming substrate bound. The structure of the apo enzyme reveals the architecture of the NiV L-P complex, which shows a high degree of similarity to other nsNSV polymerase complexes. The structure of the RNA-bound NiV L-P complex shows how the enzyme interacts with template and product RNA during early RNA synthesis and how nucleoside triphosphates are bound in the active site. Comparisons show that RNA binding leads to rearrangements of key elements in the RdRp core and to ordering of the flexible C-terminal domains of NiV L required for RNA capping. Taken together, these results reveal the first structural snapshots of an actively elongating nsNSV L-P complex and provide insights into the mechanisms of genome replication and transcription by NiV and related viruses. Sala et al. report the first structural snapshot of the Nipah virus RNA-dependent RNA polymerase in the actively elongating state, uncovering key mechanisms of RNA synthesis by non-segmented negative strand RNA viruses.
Cryo-EM structure of Nipah virus L-P polymerase complex
Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.19 Å. The L-P complex displays a conserved architecture like other NNS RNA virus polymerases and L interacts with the oligomerization domain and the extreme C-terminus region of P tetramer. Moreover, we elucidate that NiV is naturally resistant to the allosteric L-targeting inhibitor GHP-88309 due to the conformational change in the drug binding site. We also find that the non-nucleotide drug suramin can inhibit the NiV L-P polymerase activity at both the enzymatic and cellular levels. Our findings have greatly enhanced the molecular understanding of NiV genome replication and transcription and provided the rationale for broad-spectrum polymerase-targeted drug design. The Nipah virus (NiV) polymerase complex is an ideal target for drug development. Here, the authors determine the cryo-EM structures of NiV L-P polymerase complexes and reveal how NiV is resistant to the allosteric L-targeting inhibitor GHP-88309. Furthermore, the authors demonstrate that suramin could inhibit NiV L-P complex at both enzymatic and cellular levels.
Strain-Divergent m6A Landscapes Modulate Nipah Virus Replication and METTL3 Inhibition Attenuates Virulence
Nipah virus (NiV), a highly lethal zoonotic paramyxovirus, displays strain-specific pathogenicity, yet the molecular basis for this divergence remains elusive. Here, we identify N6-methyladenosine (m6A) modification as a pivotal regulator of NiV replication. Higher m6A methylation levels on viral genomic RNA and mRNAs are associated with the increased virulence observed in the NiV-Malaysia (NiV-M) strain compared to NiV-Bangladesh (NiV-B). Underlying this phenomenon, NiV infection orchestrates a reprogramming of the host m6A machinery by downregulating the methyltransferase METTL3 and the demethylase ALKBH5, while concurrently upregulating m6A reader proteins YTHDF1-3. Both METTL3 and ALKBH5 bind directly to NiV RNA, with METTL3 installing m6A to promote viral replication and ALKBH5 removing them to inhibit it. Strikingly, pharmacological inhibition of m6A modification markedly attenuates NiV replication in vitro and in vivo, underscoring the therapeutic potential of targeting the m6A pathway. Our study establishes m6A as a key determinant of NiV pathogenicity and provides a paradigm for host-directed antiviral strategies against high-risk RNA viruses.
An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections
Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness with fatality rates of 50–100%. No vaccines or licensed therapeutics currently exist to protect humans against NiV or HeV. HNVs enter host cells by fusing the viral and cellular membranes via the concerted action of the attachment (G) and fusion (F) glycoproteins, the main targets of the humoral immune response. Here, we describe the isolation and humanization of a potent monoclonal antibody cross-neutralizing NiV and HeV. Cryo-electron microscopy, triggering and fusion studies show the antibody binds to a prefusion-specific quaternary epitope, conserved in NiV F and HeV F glycoproteins, and prevents membrane fusion and viral entry. This work supports the importance of the HNV prefusion F conformation for eliciting a robust immune response and paves the way for using this antibody for prophylaxis and post-exposure therapy with NiV- and HeV-infected individuals.
The rising threat of Nipah virus: a highly contagious and deadly zoonotic pathogen
The Nipah virus (NiV) is a highly virulent zoonotic infectious agent that poses a significant threat to public health. The virus is characterized by its pleomorphic structure and a single-stranded negative-sense RNA genome. It encodes six structural proteins and three nonstructural proteins. Attachment glycoproteins play a crucial role in allowing the virus to attach to the host cell surface. The matrix protein facilitates the encapsidation of the viral genome and proteins, enabling the formation of mature viral particles. The virus can spread via different routes, including zoonotic spillover and human-to-human transmission. Clinical manifestations include mild respiratory illness and severe and fatal encephalitis. The case fatality rate of Nipah virus infection varies widely, ranging from 40 to 75%, and is regulated by factors such as healthcare availability and quality, the patient's condition, and the virulence of the infecting strain. NiV has been reported in Malaysia, Bangladesh, and India, with fruit bats serving as natural reservoirs. Early detection and prompt response are crucial for controlling outbreaks; however, these efforts are hindered by diagnostic challenges and delayed recognition. The World Health Organization has categorized NiV as a priority pathogen owing to its epidemic potential, recurrent outbreaks, and alarming mortality rates. The persistent transmission dynamics and genetic stability of the Nipah virus among fruit bats require immediate attention and coordinated global action. The present study reviews the epidemiology, clinical features, and modes of transmission of Nipah virus infection, its geographical distribution, and endemic regions, highlighting the challenges in managing disease outbreaks.
Molecular Pathogenesis of Nipah Virus
Viral diseases are causing mayhem throughout the world. One of the zoonotic viruses that have emerged as a potent threat to community health in the past few decades is Nipah virus. Nipah viral sickness is a zoonotic disease whose main carrier is bat. This disease is caused by Nipah virus (NiV). It belongs to the henipavirous group and of the family paramyxoviridae. Predominantly Pteropus spp. is the carrier of this virus. It was first reported from the Kampung Sungai Nipah town of Malaysia in 1998. Human-to-human transmission can also occur. Several repeated outbreaks were reported from South and Southeast Asia in the recent past. In humans, the disease is responsible for rapid development of acute illness, which can result in severe respiratory illness and serious encephalitis. Therefore, this calls for an urgent need for health authorities to conduct clinical trials to establish possible treatment regimens to prevent any further outbreaks.