Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,257
result(s) for
"Nitrates - standards"
Sort by:
Environmental justice and drinking water quality: are there socioeconomic disparities in nitrate levels in U.S. drinking water?
by
Swetschinski, Lucien
,
Campbell, Christopher
,
Rudel, Ruthann A.
in
African Americans
,
Agricultural pollution
,
Analysis
2019
Background
Low-income and minority communities often face disproportionately high pollutant exposures. The lead crisis in Flint, Michigan, has sparked concern about broader socioeconomic disparities in exposures to drinking water contaminants. Nitrate is commonly found in drinking water, especially in agricultural regions, and epidemiological evidence suggests elevated risk of cancer and birth defects at levels below U.S. EPA’s drinking water standard (10 mg/L NO
3
-N). However, there have been no nationwide assessments of socioeconomic disparities in exposures to nitrate or other contaminants in U.S. drinking water. The goals of this study are to identify determinants of nitrate concentrations in U.S. community water systems (CWSs) and to evaluate disparities related to wealth or race/ethnicity.
Methods
We compiled nitrate data from 39,466 U.S. CWSs for 2010–2014. We used EPA’s Safe Drinking Water Information System (SDWIS) to compile CWS characteristics and linked this information with both city- and county-level demographic data gathered from the U.S. Census Bureau. After applying multiple imputation methods to address censored nitrate concentration data, we conducted mixed-effects multivariable regression analyses at national and regional scales.
Results
5.6 million Americans are served by a CWS that had an average nitrate concentration ≥ 5 mg/L NO
3
-N between 2010 and 2014. Extent of agricultural land use and reliance on groundwater sources were significantly associated with nitrate. The percent of Hispanic residents served by each system was significantly associated with nitrate even after accounting for county-level cropland and livestock production, and CWSs in the top quartile of percent Hispanic residents exceeded 5 mg/L nearly three times as often as CWSs serving the lowest quartile. By contrast, the percent of residents living in poverty and percent African American residents were both inversely associated with nitrate.
Conclusions
Epidemiological evidence for health effects associated with drinking water above 5 mg/L NO
3
-N raises concerns about increased risk for the 5.6 million Americans served by public water supplies with average nitrate concentrations above this level. The associations we observed between nitrate concentrations and proportions of Hispanic residents support the need for improved efforts to assist vulnerable communities in addressing contamination and protecting source waters. Future studies can extend our methods to evaluate disparities in exposures to other contaminants and links to health effects.
Journal Article
Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India
by
Prasanth, K.
,
Srinivasamoorthy, K.
,
Aravinthasamy, P.
in
Aquifers
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
bicarbonates
2020
Groundwater quality investigations were carried out in one of the urban parts of south India for fluoride and nitrate contaminations, with special focus on human health risk assessment for the rapidly growing and increasingly industrialized Coimbatore City. Twenty-five groundwater samples were collected and analyzed for physico-chemical parameters (EC, pH, TDS, Ca
2+
, Mg
2+
, Na
+
, K
+
, Cl
−
, SO
4
2−
, HCO
3
−
, PO
4
3−
, NO
3
−
, and F
−
) and the piper diagram characterized 60% of them as Ca-Mg-Cl type. Analysis of fluoride (0.1 to 2.4 mg/l) shows that 32% of the groundwater samples contain F
−
over the permissible limit, affecting a region of 122.10 km
2
. Nitrate (0.1 to 148 mg/l) is over the permissible limit in 44% of the groundwater samples spread over an area of 429.43 km
2
. The total hazard indices (THI) of non-carcinogenic risk for children (0.21 to 4.83), women (0.14 to 3.35), and men (0.12 to 2.90) shows some of the THI values are above the permissible limit of the US Environmental Protection Agency. The THI-based non-carcinogenic risks are 60%, 52%, and 48% for children, women, and men. This investigation suggests higher health risk for children and also recommends that proper management plan should be adopted to improve the drinking water quality in this region in order to avoid major health issues in the near future.
Journal Article
When Does Nitrate Become a Risk for Humans?
2008
Is nitrate harmful to humans? Are the current limits for nitrate concentration in drinking water justified by science? There is substantial disagreement among scientists over the interpretation of evidence on the issue. There are two main health issues: the linkage between nitrate and (i) infant methaemoglobinaemia, also known as blue baby syndrome, and (ii) cancers of the digestive tract. The evidence for nitrate as a cause of these serious diseases remains controversial. On one hand there is evidence that shows there is no clear association between nitrate in drinking water and the two main health issues with which it has been linked, and there is even evidence emerging of a possible benefit of nitrate in cardiovascular health. There is also evidence of nitrate intake giving protection against infections such as gastroenteritis. Some scientists suggest that there is sufficient evidence for increasing the permitted concentration of nitrate in drinking water without increasing risks to human health. However, subgroups within a population may be more susceptible than others to the adverse health effects of nitrate. Moreover, individuals with increased rates of endogenous formation of carcinogenic N-nitroso compounds are likely to be susceptible to the development of cancers in the digestive system. Given the lack of consensus, there is an urgent need for a comprehensive, independent study to determine whether the current nitrate limit for drinking water is scientifically justified or whether it could safely be raised.
Journal Article
Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India
2014
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na⁺) and potassium (K⁺) and anions such as bicarbonate (HCO₃ ⁻) and chloride (Cl⁻) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca²⁺), magnesium (Mg²⁺), sulfate (SO₄ ²⁻), nitrate (NO₃ ⁻), and fluoride (F⁻) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca²⁺-Mg²⁺-Cl⁻-SO₄ ²⁻, Ca²⁺-Mg²⁺-HCO₃ ⁻ and Na⁺-K⁺-Cl⁻-SO₄ ²⁻ types during the post-monsoon period and Ca²⁺-Mg²⁺-Cl⁻-SO₄ ²⁻, Na⁺-K⁺-Cl⁻-SO₄ ²⁻ and Ca²⁺-Mg²⁺-HCO₃ ⁻ types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46 % of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.
Journal Article
A recreational water quality index using chemical, physical and microbiological parameters
by
González, Soledad Oliva
,
Almeida, César
,
Mallea, Miguel
in
Analysis
,
Aquatic Pollution
,
Argentina
2012
Purpose
The aim of this paper was to develop a new recreational water quality index (RWQI) as a tool to ensure the health of swimmers and to take practical decisions.
Methods
RWQI was elaborated with epidemiological data, and we carried out an exhaustive study of the different guidelines for recreational waters proposed by different organisations around the world. Different parameters were chosen, considering, as a priority, the swimmer’s contact and the possibility of ingestion of water during the recreational activity. Furthermore, rating curves were established for pH, chemical oxygen demand, nitrate, phosphate, detergents, enterococci, total coliforms, faecal coliforms and
Escherichia coli
.
Results and conclusions
The index was applied to the data set on water quality of the Potrero de los Funes River (San Luis, Argentina), generated during 2 years (2009–2010). Following the RWQI values classification, most of the Potrero de los Funes water samples fell in the good quality range during the study period.
Journal Article
Risk Assessment of Physico-Chemical Contaminants in Groundwater of Pettavaithalai Area, Tiruchirappalli, Tamilnadu - India
2006
A study was carried out in Pettavaithalai area to evaluate the current status of physico-chemical contaminants and their sources in groundwater. Groundwater samples collected from pettavaithalai area in 15 different stations were analyzed every alternative months over a period of two years from August 2000 to June 2002. A sugar mill is situated at the heart of the study area. Three profiles (profile A, B and C) were selected based on the direction in which the sugar mill effluent flows. In each profile five samples were collected from five different station at a regular distance of about 1 Km. The physico-chemical parameters such as pH, EC TDS, TH, NO₃, SO₄, PO₄, Na, K, Ca, Mg, DO, BOD and COD have been analyzed. The results showed that among the three profiles, many of the estimated physico-chemical parameters of profile C were very high when compared to profile B and A which indicates the poor quality of the groundwater around this area.
Journal Article
Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter
2004
The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape: Brassica napus ssp. oleifera (Metzg.) Sinksk). For this purpose, ceramic suction cups were used, installed at 80 cm below the soil surface. Soil water samples were extracted at intervals of ca 14 days over the course of three leaching seasons (September – February) in 1992–1995 on sandy soil in a crop rotation comprising potato (Solanum tuberosum L.), spring wheat (Triticum aestivum L.), sugar beet (Beta vulgaris L.) and oats (Avena sativa L.). Nitrate-N concentration was determined in the soil water samples. In a selection of samples several cations and anions were determined in order to analyze which cations primarily leach in combination with nitrate. The water flux at 80 cm depth was calculated with the SWAP model. Nitrate-N loss per interval was obtained by multiplying the measured nitrate-N concentration and the calculated flux. Accumulation over the season yielded the total nitrate-N leaching and the seasonal flux-weighted nitrate-N concentration in leachate. Among the cases studied, the total leaching of nitrate-N ranged between 30 and 140 kg ha–1. Over the leaching season, the flux-weighted nitrate-N concentration ranged between 5 and 25 mg L–1. Without catch crop cultivation, that concentration exceeded the EU nitrate-N standard (11.3 mg L–1) in all cases. Averaged for the current rotation, cultivation of catch crops would result in average nitrate-N concentrations in leachate near or below the EU nitrate standard. Nitrate-N concentrations correlated with calcium concentration and to a lesser extent with magnesium and potassium, indicating that these three ion species primarily leach in combination with nitrate. It is concluded that systematic inclusion of catch crops helps to decrease the nitrate-N concentration in leachate to values near or below the EU standard in arable rotations on sandy soils.
Journal Article
Sampling Considerations for Establishment of Baseline Loadings from Forested Watersheds for TMDL Application
by
Edwards, Pamela J.
,
Kochenderfer, James N.
,
Williard, Karl W. J.
in
Applied sciences
,
Base flow
,
Continental surface waters
2004
Five methods for estimating maximum daily and annual nitrate (NO3) and suspended sediment loads using periodic sampling of varying intensities were compared to actual loads calculated from intensive stormflow and baseflow sampling from small, forested watersheds in north central West Virginia to determine if the less intensive sampling methods were accurate and could be utilized in TMDL development. There were no significant differences between the annual NO3 load estimates using non-intensive sampling methods and the actual NO3 loads. However, maximum daily NO3 loads were estimated less accurately than annual loads. The ability to estimate baseline NO3 loads fairly accurately with non-intensive concentration data is attributed to the small fluctuation in NO3 concentrations over flow and time, particularly during storms. By contrast, suspended sediment exports determined by any of the non-intensive methods varied significantly and widely from and compared poorly to the actual exports for both daily and annual methods. Weekly sampling better approximated actual annual exports, but there were no significant statistical differences among weekly, monthly, and quarterly estimates. Suspended sediment concentrations varied widely within and among storm events, so that accurate estimates of total annual or maximum daily loads could not be obtained from infrequent sampling.
Journal Article
Application of the Entropy Weighted Water Quality Index (EWQI) and the Pollution Index of Groundwater (PIG) to Assess Groundwater Quality for Drinking Purposes: A Case Study in a Rural Area of Telangana State, India
2021
In this study, the quality of groundwater was assessed in a semi-arid region of India by using an entropy weighted water quality index (EWQI) and a pollution index of groundwater (PIG). The EWQI and PIG methods were used to evaluate data on physicochemical parameters in relation to drinking water quality standards. Groundwater samples were collected from the Dubbak region, Telangana state, India, and were analyzed for pH, total hardness, electrical conductivity, total dissolved solids, bicarbonate (HCO3−), chloride (Cl−), sulfate (SO42−), nitrate (NO3−), fluoride (F−), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), and potassium (K+). The groundwater of the study region is alkaline in nature. The abundance of cations and anions based on their mean values is in the following order: Na+ > Ca2+ > Mg2+ > K+ and Cl− > HCO3− > NO3− > SO42− > F−, respectively. The calculated EWQI values ranged from 49.0 to 174.6, with an average of 93.3. Overall, EWQI data showed that only 60% of groundwater samples were of suitable quality for drinking, although only marginally, whereas the remaining 40% of samples were unsuitable for drinking purposes and would therefore require treatment. The values of PIG varied from 0.5 to 1.8, with an average of 1.0, which showed that only 63% of groundwater samples from the study area were suitable for drinking purposes.
Journal Article
Open-Source Photometric System for Enzymatic Nitrate Quantification
by
Squires, D. A.
,
Walbeck, J.
,
Wittbrodt, B. T.
in
3-D printers
,
Anthropogenic factors
,
Appropriate technology
2015
Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.
Journal Article