Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,342
result(s) for
"Nitric Oxide Synthase Type II - immunology"
Sort by:
Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
2015
Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization.
In response to microbial ligands, IRF5 promotes pro-inflammatory M1 macrophage activation and production of nitrous oxide. Here the authors show that nitrous oxide modifies IRF5 tyrosine residues as a negative feedback, limiting the inflammatory response and protecting from endotoxin shock.
Journal Article
Mesenchymal stem cells: a double-edged sword in regulating immune responses
2012
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show that MSCs can also enhance immune responses. This immune-promoting effect occurred when proinflammatory cytokines were inadequate to elicit sufficient NO production. When inducible nitric oxide synthase (iNOS) production was inhibited or genetically ablated, MSCs strongly enhance T-cell proliferation
in vitro
and the delayed-type hypersensitivity response
in vivo
. Furthermore,
iNOS
−/−
MSCs significantly inhibited melanoma growth. It is likely that in the absence of NO, chemokines act to promote immune responses. Indeed, in
CCR5
−/−
CXCR3
−/−
mice, the immune-promoting effect of
iNOS
−/−
MSCs is greatly diminished. Thus, NO acts as a switch in MSC-mediated immunomodulation. More importantly, the dual effect on immune reactions was also observed in human MSCs, in which indoleamine 2,3-dioxygenase (IDO) acts as a switch. This study provides novel information about the pathophysiological roles of MSCs.
Journal Article
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects
2019
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U
13
C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative 4-octyl-itaconate is anti-inflammatory partly as a result of inhibiting GAPDH enzymatic activity and thereby glycolysis in macrophages.
Journal Article
Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas
by
María A. Duque-Correa
,
Sandra Schommer-Leitner
,
January Weiner III
in
Animals
,
Arginase - genetics
,
Arginase - immunology
2014
Significance Tuberculosis (TB) granulomas represent sites of both bacterial containment and tissue pathology. Macrophage killing of Mycobacterium tuberculosis ( Mtb ) in granulomas to contain infection must be regulated to prevent collateral tissue damage. Nitric oxide synthase-2 (NOS2) and arginase-1 (Arg1), macrophage enzymes metabolizing l -arginine, play key roles in this process. NOS2 produces reactive nitrogen intermediates to kill Mtb , whereas Arg1 regulates NOS2 activity via substrate competition. Arg1 activity could predominate in hypoxic regions of granulomas where NOS2 activity likely is suboptimal. Here we show that Arg1 plays a central role in restricting bacterial growth and restraining tissue damage within granulomas in TB and other chronic inflammatory diseases. These findings point to the modulation of Arg1 activity as a potential host-directed therapy for TB.
Lung granulomas develop upon Mycobacterium tuberculosis ( Mtb ) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb- infected and -uninfected macrophages and Mtb- specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l -arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l -arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia.
Journal Article
The Distribution of Macrophages with a M1 or M2 Phenotype in Relation to Prognosis and the Molecular Characteristics of Colorectal Cancer
by
Edin, Sofia
,
Dahlin, Anna M.
,
Rutegård, Jörgen
in
Analysis
,
Angiogenesis
,
Antigens, CD - analysis
2012
High macrophage infiltration has been correlated to improved survival in colorectal cancer (CRC). Tumor associated macrophages (TAMs) play complex roles in tumorigenesis since they are believed to hold both tumor preventing (M1 macrophages) and tumor promoting (M2 macrophages) activities. Here we have applied an immunohistochemical approach to determine the degree of infiltrating macrophages with a M1 or M2 phenotype in clinical specimens of CRC in relation to prognosis, both in CRC in general but also in subgroups of CRC defined by microsatellite instability (MSI) screening status and the CpG island methylator phenotype (CIMP). A total of 485 consecutive CRC specimens were stained for nitric oxide synthase 2 (NOS2) (also denoted iNOS) as a marker for the M1 macrophage phenotype and the scavenger receptor CD163 as a marker for the M2 macrophage phenotype. The average infiltration of NOS2 and CD163 expressing macrophages along the invasive tumor front was semi-quantitatively evaluated using a four-graded scale. Two subtypes of macrophages, displaying M1 (NOS2(+)) or M2 (CD163(+)) phenotypes, were recognized. We observed a significant correlation between the amount of NOS2(+) and CD163(+) cells (P<0.0001). A strong inverse correlation to tumor stage was found for both NOS2 (P<0.0001) and CD163 (P<0.0001) infiltration. Furthermore, patients harbouring tumors highly infiltrated by NOS2(+) cells had a significantly better prognosis than those infiltrated by few NOS2(+) cells, and this was found to be independent of MSI screening status and CIMP status. No significant difference was found on cancer-specific survival in groups of CRC with different NOS2/CD163 ratios. In conclusion, an increased infiltration of macrophages with a M1 phenotype at the tumor front is accompanied by a concomitant increase in macrophages with a M2 phenotype, and in a stage dependent manner correlated to a better prognosis in patients with CRC.
Journal Article
Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes
by
Collier, Ai-ris
,
Fletcher, Anne L
,
Turley, Shannon J
in
631/250/1619/554
,
631/250/2152/569/2495
,
Animals
2011
Efficient T cell priming occurs in organized lymphoid tissues. Turley and colleagues show that activated T cells induce nitric oxide production by lymph node stromal cells, thus limiting T cell proliferation.
Fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) are nonhematopoietic stromal cells of lymphoid organs. They influence the migration and homeostasis of naive T cells; however, their influence on activated T cells remains undescribed. Here we report that FRCs and LECs inhibited T cell proliferation through a tightly regulated mechanism dependent on nitric oxide synthase 2 (NOS2). Expression of NOS2 and production of nitric oxide paralleled the activation of T cells and required a tripartite synergism of interferon-γ, tumor necrosis factor and direct contact with activated T cells. Notably,
in vivo
expression of NOS2 by FRCs and LECs regulated the size of the activated T cell pool. Our study elucidates an as-yet-unrecognized role for the lymph node stromal niche in controlling T cell responses.
Journal Article
Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages
by
Sershen, Cheryl L.
,
Salim, Taha
,
May, Elebeoba E.
in
Activation
,
BASIC BIOLOGICAL SCIENCES
,
Biology and Life Sciences
2016
Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.
Journal Article
Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer
2018
Background
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer related death worldwide. Tumor-infiltrating macrophages are believed to play an important role in growth, progression, and metastasis of tumors. In NSCLC, the role of macrophages remains controversial; therefore, we aimed to evaluate the distribution of macrophages (M1 and M2) in tumor islets and stroma and to analyze their relations to patients’ survival.
Methods
Lung tissue specimens from 80 NSCLC patients who underwent surgical resection for NSCLC (pathological stage I-III) and 16 control group subjects who underwent surgery because of recurrent spontaneous pneumothorax were analyzed. Immunohistochemical double staining of CD68/iNOS (markers for M1 macrophages) and CD68/CD163 (markers for M2 macrophages) was performed and evaluated in a blinded manner. The numbers of M1 and M2 macrophages in tumor islets and stroma were counted manually.
Results
Predominant infiltration of M1 and M2 macrophages was observed in the tumor stroma compared with the tumor islets. M2 macrophages predominated over M1 macrophages in the tumor tissue. Tumor islets-infiltrating M1 macrophages and the number of total tumor-infiltrating M2 macrophages were independent predictors of patients survival: high infiltration of M1 macrophages in tumor islets was associated with increased overall survival in NSCLC (
P
< 0.05); high infiltration of total M2 macrophages in tumor (islets and stroma) was associated with reduced overall survival in NSCLC (
P
< 0.05).
Conclusions
This study demonstrated that high infiltration of M1 macrophages in the tumor islets and low infiltration of total tumor-infiltrating M2 macrophages were associated with improved NSCLC patients’ survival.
Trial registration
ClinicalTrials.gov
NCT01955343
, registered on September 27, 2013
Journal Article
Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis
2016
Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis.
Journal Article
Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species
2014
Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat, rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all belong to the phylogenetic clade,
Glires
. Although the evolutionary significance of this divergence is not known, we believe that this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.
Journal Article