Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
48,118
result(s) for
"Nitrides"
Sort by:
MAX phases : properties of machinable ternary carbides and nitrides
2013
In this comprehensive yet compact monograph, Michel W. Barsoum, one of the pioneers in the field and the leading figure in MAX phase research, summarizes and explains, from both an experimental and a theoretical viewpoint, all the features that are necessary to understand and apply these new materials. The book covers elastic, electrical, thermal, chemical and mechanical properties in different temperature regimes. By bringing together, in a unifi ed, self-contained manner, all the information on MAX phases hitherto only found scattered in the journal literature, this one-stop resource offers researchers and developers alike an insight into these fascinating materials.
Novel Composite Nitride Nanoceramics from Reaction-Mixed Nanocrystalline Powders in the System Aluminum Nitride AlN/Gallium Nitride GaN/Titanium Nitride TiN (Al:Ga:Ti = 1:1:1)
2022
A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanoceramics. The synthesis starts with a 4 h reflux in hexane of the mixture of the respective metal dimethylamides, which is followed by hexane evacuation, and reactions of the residue in liquid ammonia at −33 °C to afford a mixed metal amide/imide precursor. Plausible equilibration towards a bimetallic Al/Ga-dimethylamide compound upon mixing of the solutions of the individual metal-dimethylamide precursors containing dimeric Al[N(CH3)2]32 and dimeric Ga[N(CH3)2]32 is confirmed by 1H- and 13CH-NMR spectroscopy in C6D6 solution. The precursor is pyrolyzed under ammonia at 800 and 950 °C yielding, respectively, two different reaction-mixed composite nitride nanopowders. The latter are subjected to no-additive high-pressure and high-temperature sintering under conditions either conservative for the initial powder nanocrystallinity (650 °C, 7.7 GPa) or promoting crystal growth/recrystallization and, possibly, solid solution formation via reactions of AlN and GaN towards Al0.5Ga0.5N (1000 and 1100 °C, 7.7 GPa). The sintered composite pellets show moderately high mechanical hardness as determined by the Vicker’s method. The starting nanopowders and resulting nanoceramics are characterized by powder XRD, Raman spectroscopy, and SEM/EDX. It is demonstrated that, in addition to the multi-nitride composite nanoceramics of hexagonal AlN/hexagonal GaN/cubic TiN, under specific conditions the novel composite nanoceramics made of hexagonal Al0.5Ga0.5N and cubic TiN can be prepared.
Journal Article
A Comparison of the Mechanisms and Activation Barriers for Ammonia Synthesis on Metal Nitrides (Ta3N5, Mn6N5, Fe3Mo3N, Co3Mo3N)
In this study we perform a comparison of the reaction mechanism and the activation barrier for the rate-determining step in various metal nitrides (Ta3N5, Mn6N5, Fe3Mo3N, Co3Mo3N) for the ammonia synthesis reaction. The reactions are explained with simplified schematics and the energy profiles for the various reaction mechanisms are given in order to screen the catalytic activity of the catalysts for the ammonia synthesis reaction. We find that the catalytic activity ranks in the following order: Co3Mo3N > Fe3Mo3N > Ta3N5 > Mn6N5. We also find that the reaction mechanism proceeds either by a Langmuir–Hinshelwood and an Eley–Rideal/Mars–van Krevelen mechanism. This is an overview of about 10 years of computational research conducted to provide an overview of the progress established in this field of study.
Journal Article
Layered boron nitride as a release layer for mechanical transfer of GaN-based devices
by
Kobayashi, Yasuyuki
,
Makimoto, Toshiki
,
Akasaka, Tetsuya
in
639/166/988
,
639/301/1005/1007
,
639/301/119/1000
2012
Introducing an extremely thin layer of boron nitride between a sapphire substrate and the gallium nitride semiconductor grown on it is shown to facilitate the transfer of the resulting nitride structures to more flexible and affordable substrates.
Lift-off for nitride semiconductors
Nitride semiconductors are renowned for their excellent electronic and optical properties and are the materials of choice for many optical devices, including BluRay players. But they have an important practical drawback: they are very particular about the substrates (typically sapphire) on which they can be grown. This has stimulated the search for new ways of transferring such materials from one substrate to another. Here Kobayashi
et al
. demonstrate, using a gallium nitride-based device, that the addition of an extremely thin layer of hexagonal boron nitride to the initial growth surface facilitates the straightforward mechanical release of the resulting nitride structures, as well as subsequent transfer to any suitable substrate, including metals, glass and transparent plastics.
Nitride semiconductors are the materials of choice for a variety of device applications, notably optoelectronics
1
,
2
and high-frequency/high-power electronics
3
. One important practical goal is to realize such devices on large, flexible and affordable substrates, on which direct growth of nitride semiconductors of sufficient quality is problematic. Several techniques—such as laser lift-off
4
,
5
—have been investigated to enable the transfer of nitride devices from one substrate to another, but existing methods still have some important disadvantages. Here we demonstrate that hexagonal boron nitride (h-BN) can form a release layer that enables the mechanical transfer of gallium nitride (GaN)-based device structures onto foreign substrates. The h-BN layer serves two purposes: it acts as a buffer layer for the growth of high-quality GaN-based semiconductors, and provides a shear plane that makes it straightforward to release the resulting devices. We illustrate the potential versatility of this approach by using h-BN-buffered sapphire substrates to grow an AlGaN/GaN heterostructure with electron mobility of 1,100 cm
2
V
−1
s
−1
, an InGaN/GaN multiple-quantum-well structure, and a multiple-quantum-well light-emitting diode. These device structures, ranging in area from five millimetres square to two centimetres square, are then mechanically released from the sapphire substrates and successfully transferred onto other substrates.
Journal Article
Control of the Nitriding Process of AISI 52100 Steel in the NHsub.3/Nsub.2 Atmosphere
2025
This paper proposes a mathematical description of nitriding atmospheres obtained from a one-component ammonia ingoing atmosphere and a two-component ammonia inlet nitrogen-diluted atmosphere. The Fe-N phase equilibrium diagrams of the nitriding atmosphere in the hydrogen content-temperature (Q-T) system for selected NH[sub.3]/N[sub.2] atmosphere compositions are presented. The nitriding atmosphere obtained with different degrees of nitrogen dilution of the ingoing atmosphere was characterized. It has been shown that in processes carried out in nitriding atmospheres obtained from a two-component atmosphere with nitrogen, there is no direct relationship between the value of the nitrogen potential and the degree of dilution of the ingoing atmosphere with nitrogen. It has been shown analytically and confirmed experimentally that with changes in the degree of dilution of ammonia with nitrogen, the hydrogen content of the nitriding atmosphere and, consequently, the nitrogen availability of the nitriding atmosphere change. Using the example of nitriding AISI 52100 steel, it has been experimentally demonstrated that the change in nitrogen availability, caused by a change in the degree of dilution of the ingoing atmosphere with nitrogen, is not accompanied by a change in the value of the nitrogen potential. It has also been shown that the change in the nitrogen availability of the nitriding atmosphere, induced by the change in the composition of the aNH[sub.3]/bN[sub.2] ingoing atmosphere, affects the kinetics of nitrogen mass gain in the nitrided layer and the distribution of nitrogen mass between the iron nitride layer and the solution zone. It has also been shown that with the change in nitrogen availability, what changes in addition to the thickness of the iron nitride layer is also the phase composition of the layer. Using gravimetric tests, the mass of nitrogen in the iron nitride layer and the solution zone has been determined. To describe the equilibrium between the NH[sub.3]/H[sub.2] atmosphere and nitrogen in the different iron phases, a modified Lehrer diagram in the coordinate system of temperature and hydrogen content in the nitriding atmospheres (T-Q) has been proposed.
Journal Article
Application of Pulsed Laser Deposition Film Materials
2025
Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and green preparation of high-quality, complex structured 2D film materials due to its features such as maintaining the excellent stoichiometric ratio of the target, strong process flexibility, and non-polluting environment. Therefore, this paper discusses the exciting topic of PLD technology in the preparation and application of 2D film materials. Based on a systematic exposition of its basic principles and influencing factors, it provides a detailed overview of the current application status of PLD technology in the preparation of various 2D film materials such as carbides, sulfides, oxides, nitrides, and perovskites. Meanwhile, the advantages and disadvantages of PLD technology in the preparation of 2D film materials were also positively summarized, and the challenges and emerging strategies it faces in the future preparation of 2D film materials were cautiously discussed. This provides practical suggestions and reflections for the sustainable development of PLD technology in the fields of basic research, performance regulation, device development, and application of 2D film materials preparation.
Journal Article
Theoretical Study of Ip/I-Block Metal Single-Atom-Loaded Carbon Nitride Catalyst for Photocatalytic Water Splitting
2024
Graphitic carbon nitride (g-C[sub.3]N[sub.4]), recognized for its considerable potential as a heterogeneous photocatalyst in water splitting, has attracted extensive research interest. By using density functional theory (DFT) calculations, the regulatory role of p-block metal (PM) single atoms on the photocatalytic activity of g-C[sub.3]N[sub.4] in overall water splitting was systematically explored. The incorporation of PM atoms (Ge, Sn and Pb) led to a reduction in the overpotentials required for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Combined with the electronic structures analysis via hybrid functional, it was found that the introduction of Ge, Sn or Pb optimizes the positions of the valence band maximum (VBM) and the conduction band minimum (CBM), providing a robust driving force for HER and ensuring substantial driving force for OER. Meanwhile, the presence of these three PMs induces the spatial separation of VBM and CBM, inhibiting the recombination of carriers. These findings have significant implications for the design and preparation of efficient photocatalysts.
Journal Article
Quantum Dots Mediated Heterojunction Coupling MoSesub.2 Photoanode for Photoelectrochemical Water Splitting
2024
Graphene quantum dots (GQDs) possess the photosensitive absorption for photoelectrochemical hydrogen evolution owing to special band structures, whereas they usually confront with photo-corrosion or undesired charge recombination during photoelectrochemical reactions. Hence, we establish the heterojunction between GQDs and MoSe[sub.2] sheets via a hydrothermal process for improved stability and performance. Photoanodic water splitting with hydrogen evolution boosted by the heteroatom doped N,S-GQDs/MoSe[sub.2] heterojunction has been attained due to the abundant active sites, promoted charge separation and transfer kinetics with reduced energy barriers. Diphasic 1T and 2H MoSe[sub.2] sheet-hybridized quantum dots contribute to the Schottky heterojunction, which can play a key role in expedited carrier transport to inhibit accumulative photo-corrosion and increase photocurrent. Heteroatom dopants lead to favored energy band matching, bandgap narrowing, stronger light absorption and high photocurrent density. The external quantum efficiency of the doped heterojunction has been elevated twofold over that of the non-doped pristine heterojunction. Modification of the graphene quantum dots and MoSe[sub.2] heterojunction demonstrate a viable and adaptable platform toward photoelectrochemical hydrogen evolution processes.
Journal Article
A photoelectrochemical aptasensor based on W.sup.6+-doped carbon nitride with carbon-rich structure for sensitive detection of diazinon
2024
A photoelectrochemical (PEC) aptasensor us reported based on W.sup.6+-doped carbon nitride with carbon-rich structure (WCCN). WCCN exhibited excellent photoelectric conversion performance owing to the carbon-rich structure and W.sup.6+ doping. C atoms can replace the center N/edge N atoms to form a carbon-rich structure, improving the insufficient light absorption of CN in the visible region. Also, W.sup.6+ doping forms a directional electron transfer channel, achieving the efficient separation and transport of carriers. W.sup.6+ doping and carbon-rich structure can promote the generation, transfer, and separation of photogenerated carriers, further enhancing PEC performance. The fabricated PEC aptasensor based on WCCN demonstrated a wide detection range (3.92 ~ 588 pg L.sup.-1), a low detection limit (1.31 pg L.sup.-1, S/N = 3), good reproducibility, selectivity, stability, and practical application in actual water samples. This work explores the modification strategy of element doping for carbon nitride with high photoelectric property and offers a cost-effective and simplified method for the detection of pesticide residues. Graphical
Journal Article