Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,321 result(s) for "Nitrogen isotopes"
Sort by:
Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis
Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day(-1), often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.
Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability
Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (δ¹⁵N), foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Arbuscular mycorrhizal, ectomycorrhizal, and ericoid mycorrhizal plants were depleted in foliar δ¹⁵N by 2[per thousand], 3.2[per thousand], 5.9[per thousand], respectively, relative to nonmycorrhizal plants. Foliar δ¹⁵N increased with decreasing mean annual precipitation and with increasing mean annual temperature (MAT) across sites with MAT greater-than-or-equal -0.5°C, but was invariant with MAT across sites with MAT < -0.5°C. In independent landscape-level to regional-level studies, foliar δ¹⁵N increased with increasing N availability; at the global scale, foliar δ¹⁵N increased with increasing foliar N concentrations and decreasing foliar phosphorus (P) concentrations. Together, these results suggest that warm, dry ecosystems have the highest N availability, while plants with high N concentrations, on average, occupy sites with higher N availability than plants with low N concentrations. Global-scale comparisons of other components of the N cycle are still required for better mechanistic understanding of the determinants of variation in foliar δ¹⁵N and ultimately global patterns in N cycling.
21st-century rise in anthropogenic nitrogen deposition on a remote coral reef
With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been affected. In a coral core from Dongsha Atoll, a remote coral reef ecosystem, we observe a decline in the 15N/14N of coral skeleton–bound organic matter, which signals increased deposition of anthropogenic atmospheric N on the open ocean and its incorporation into plankton and, in turn, the atoll corals. The first clear change occurred just before 2000 CE, decades later than predicted by other work. The amplitude of change suggests that, by 2010, anthropogenic atmospheric N deposition represented 20 ± 5% of the annual N input to the surface ocean in this region, which appears to be at the lower end of other estimates.
Dissolved nitrogen uptake versus nitrogen fixation: Mode of nitrogen acquisition affects stable isotope signatures of a diazotrophic cyanobacterium and its grazer
Field studies suggest that changes in the stable isotope ratios of phytoplankton communities can be used to track changes in the utilization of different nitrogen sources, i.e., to detect shifts from dissolved inorganic nitrogen (DIN) uptake to atmospheric nitrogen (N 2 ) fixation by diazotrophic cyanobacteria as an indication of nitrogen limitation. We explored changes in the stable isotope signature of the diazotrophic cyanobacterium Trichormus variabilis in response to increasing nitrate (NO 3 − ) concentrations (0 to 170 mg L −1 ) under controlled laboratory conditions. In addition, we explored the influence of nitrogen utilization at the primary producer level on trophic fractionation by studying potential changes in isotope ratios in the freshwater model Daphnia magna feeding on the differently grown cyanobacteria. We show that δ 15 N values of the cyanobacterium increase asymptotically with DIN availability, from -0.7 ‰ in the absence of DIN (suggesting N 2 fixation) to 2.9 ‰ at the highest DIN concentration (exclusive DIN uptake). In contrast, δ 13 C values of the cyanobacterium did not show a clear relationship with DIN availability. The stable isotope ratios of the consumer reflected those of the differently grown cyanobacteria but also revealed significant trophic fractionation in response to nitrogen utilization at the primary producer level. Nitrogen isotope turnover rates of Daphnia were highest in the absence of DIN as a consequence of N 2 fixation and resulting depletion in 15 N at the primary producer level. Our results highlight the potential of stable isotopes to assess nitrogen limitation and to explore diazotrophy in aquatic food webs.
Exceptionally high carbon fixation and nitrogen assimilation rates in microbial mats of an alkaline soda lake
Alkaline soda lakes, characterized by high pH and high concentrations of sodium and dissolved carbonates, support diverse alkaliphilic microbial communities. Using stable isotope probing with 13C-bicarbonate, 15N-ammonium, 15N-nitrate, and 15N-urea, we measured assimilation rates for carbon and nitrogen by microbial mats of alkaline Goodenough Lake, Canada. Our results showed extremely high carbon fixation rates averaging 24 g C/m2/day, equalling or exceeding rates measured fifty years ago in African alkaline soda lakes. Urea consumption occurred both during the day and during the night, but assimilation mainly occurred during the day. Ammonium assimilation was stable between day and night. Apparently, cyanobacteria preferred urea as a nitrogen source, whereas heterotrophs preferred ammonium. Two different cyanobacteria dominated the microbial mats, Nodosilinea and Sodalinema. Using Orbitrap mass spectrometry, we only observed assimilation of 13C bicarbonate by Sodalinema, but not by Nodosilinea. The latter might focus on different carbon sources, such as urea. Strong negative correlation between their abundances in proteomes also supported niche partitioning between these two cyanobacteria.
Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria
Natural abundance of stable nitrogen (N) and oxygen (O) isotopes are invaluable biogeochemical tracers for assessing the N transformations in the environment. To fully exploit these tracers, the N and O isotope effects ( 15 ε and 18 ε) associated with the respective nitrogen transformation processes must be known. However, the N and O isotope effects of anaerobic ammonium oxidation (anammox), one of the major fixed N sinks and NO 3 − producers, are not well known. Here, we report the dual N and O isotope effects associated with anammox by three different anammox bacteria including “ Ca . Scalindua japonica ”, a putative marine species, which were measured in continuous enrichment culture experiments. All three anammox species yielded similar N isotope effects of NH 4 + oxidation to N 2 ( 15 ε NH4→N2 ) ranging from 30.9‰ to 32.7‰ and inverse kinetic isotope effects of NO 2 − oxidation to NO 3 − ( 15 ε NO2→NO3  = −45.3‰ to −30.1‰). In contrast, 15 ε NO2→N2 (NO 2 − reduction to N 2 ) were significantly different among three species, which is probably because individual anammox bacteria species might possess different types of nitrite reductase. We also report the combined O isotope effects for NO 2 − oxidation ( 18 E NO2→NO3 ) by anammox bacteria. These obtained dual N and O isotopic effects could provide significant insights into the contribution of anammox bacteria to the fixed N loss and NO 2 − reoxidation (N recycling) in various natural environments.
Human-modified landscapes alter mammal resource and habitat use and trophic structure
The broad negative consequences of habitat degradation on biodiversity have been studied, but the complex effects of natural–agricultural landscape matrices remain poorly understood. Here we used stable carbon and nitrogen isotopes to detect changes in mammal resource and habitat use and trophic structure between preserved areas and human-modified landscapes (HMLs) in a biodiversity hot spot in South America. We classified mammals into trophic guilds and compared resource use (in terms of C₃- and C₄-derived carbon), isotopic niches, and trophic structure across the 2 systems. In HMLs, approximately one-third of individuals fed exclusively on items from the agricultural matrix (C₄), while in preserved areas, ∼68% depended on forest remnant resources (C₃). Herbivores, omnivores, and carnivores were the guilds that most incorporated C₄ carbon in HMLs. Frugivores maintained the same resource use between systems (C₃ resources), while insectivores showed no significant difference. All guilds in HMLs except insectivores presented larger isotopic niches than those in preserved areas. We observed a complex trophic structure in preserved areas, with increasing δ15N values from herbivores to insectivores and carnivores, differing from that in HMLs. This difference is partially explained by species loss and turnover and mainly by the behavioral plasticity of resilient species that use nitrogen-enriched food items. We concluded that the landscape cannot be seen as a habitat/nonhabitat dichotomy because the agricultural landscape matrix in HMLs provides mammal habitat and opportunities for food acquisition. Thus, favorable management of the agricultural matrix and slowing the conversion of forests to agriculture are important for conservation in this region.
Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use.
Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants
Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate ( f NO3- ), ammonium ( f NH4+ ), and organic N ( f EON ) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of f NO3- , f NH4+ , and f EON . The f NO3- increases with MAT, reaching 46% at 28.5 °C. The f NH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the f EON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems. Isotopic constraints reveal that soil nitrogen contribution to global plants is temperature-controlled, not by precipitation or nitrogen deposition. As temperatures rise, inorganic nitrogen becomes more important and preferred over organic nitrogen.
A Neandertal dietary conundrum
The characterization of Neandertals’ diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal’s tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.