Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
183
result(s) for
"Nitroreductases - genetics"
Sort by:
NTR 2.0: a rationally engineered prodrug-converting enzyme with substantially enhanced efficacy for targeted cell ablation
by
Lander, Arthur D.
,
Le, Katherine D.
,
Lopez-Burks, Martha E.
in
631/1647
,
631/1647/767/1424
,
631/532/2118
2022
Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.
An engineered bacterial nitroreductase, NTR 2.0, improves chemically induced cell ablation, facilitating novel sustained ablation paradigms for testing the effects of chronic inflammation on regeneration, and modeling degenerative disease.
Journal Article
Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering
by
Forde, Brian M.
,
Cook, Gregory M.
,
Ahmed, F. Hafna
in
Analysis
,
Antibiotic resistance
,
Antibiotics
2020
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.
Journal Article
Reduction of polynitroaromatic compounds: the bacterial nitroreductases
by
Moreno-Vivián, Conrado
,
Roldán, María Dolores
,
Castillo, Francisco
in
bacteria
,
Bacteria - chemistry
,
Bacteria - classification
2008
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Journal Article
Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily
by
Akiva, Eyal
,
Tokuriki, Nobuhiko
,
Babbitt, Patricia C.
in
Biological evolution
,
Biological Sciences
,
Biophysics and Computational Biology
2017
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Journal Article
The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies
2024
E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be −215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π–π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.
Journal Article
Transcriptomic analysis of benznidazole-resistant Trypanosoma cruzi clone reveals nitroreductase I-independent resistance mechanisms
by
Triana-Chávez, Omar
,
Mejía-Jaramillo, Ana María
,
Ospina-Zapata, Hader
in
Benznidazole
,
Biology and Life Sciences
,
Care and treatment
2025
The enzyme nitroreductase I (NTRI) has been implicated as the primary gene responsible for resistance to benznidazole (Bz) and nifurtimox in Trypanosoma cruzi . However, Bz-resistant T. cruzi field isolates carrying the wild-type NTR-I enzyme suggest that additional mechanisms independent of this enzyme may contribute to the resistance phenotype. To investigate these alternative mechanisms, in this paper, we pressured a Trypanosoma cruzi clone with a high Bz concentration over several generations to select Bz-resistant clones. Surprisingly, we found a highly drug-resistant clone carrying a wild-type NTRI. However, the knockout of this gene using CRISPR-Cas9 in the sensitive clone showed that NTRI indeed induces resistance to Bz and supports the idea that the resistant one exhibits mechanisms other than NTRI. To explore these new mechanisms, we performed an RNA-seq analysis, which revealed genes involved in metabolic pathways related to oxidative stress, energy metabolism, membrane transporters, DNA repair, and protein synthesis. Our results support the idea that resistance to benznidazole is a multigenic trait. A Deeper understanding of these genes is essential for developing new drugs to treat Chagas disease.
Journal Article
Isolation, identification, and characterisation of the malachite green detoxifying bacterial strain Bacillus pacificus ROC1 and the azoreductase AzrC
2025
Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy. MG is persistent in the environment and so requires degradative intervention. In this work we isolated
Bacillus pacificus
ROC1 strain from a salt flat in Pakistan that had the ability to aerobically detoxify MG, as determined by bacterio- and phyto-toxicity assays. We demonstrate immobilized
B. pacificus
ROC1 can effectively detoxify MG, which highlights a potential method for its biodegradation. Genomic sequencing identified three candidate azo-reductases within
B. pacificus
ROC1 that could be responsible for the MG-degrading activity. These were cloned, expressed and purified from
Escherichia coli
, with one (AzrC), catalyzing the reduction of MG to leuco-MG
in vitro.
AzrC was crystallised and MG was captured within the active site in a Michaelis complex, providing structural insight into the reduction mechanism. Altogether, this work identifies a bacterium capable of aerobically degrading a major industrial pollutant and characterizes the molecular basis for this activity.
Journal Article
Structural Evaluation of a Nitroreductase Engineered for Improved Activation of the 5-Nitroimidazole PET Probe SN33623
by
Bagdžiūnas, Gintautas
,
Patterson, Adam V.
,
Williams, Elsie M.
in
Amino acids
,
Aziridines - chemistry
,
Aziridines - metabolism
2024
Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.
Journal Article
mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes
2008
Nifurtimox and benznidazole are the front-line drugs used to treat Chagas disease, the most important parasitic infection in the Americas. These agents function as prodrugs and must be activated within the parasite to have trypanocidal effects. Despite >40 years of research, the mechanism(s) of action and resistance have remained elusive. Here, we report that in trypanosomes, both drugs are activated by a NADH-dependent, mitochondrially localized, bacterial-like, type I nitroreductase (NTR), and that down-regulation of this explains how resistance may emerge. Loss of a single copy of this gene in Trypanosoma cruzi, either through in vitro drug selection or by targeted gene deletion, is sufficient to cause significant cross-resistance to a wide range of nitroheterocyclic drugs. In Trypanosoma brucei, loss of a single NTR allele confers similar cross-resistance without affecting growth rate or the ability to establish an infection. This potential for drug resistance by a simple mechanism has important implications, because nifurtimox is currently undergoing phase III clinical trials against African trypanosomiasis.
Journal Article
Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity
by
Gilbert, Christophe
,
Chalansonnet, Valérie
,
Orenga, Sylvain
in
Alignment
,
Amino Acid Sequence
,
Azo compounds
2017
Background
Nitroreductases, NAD(P)H dependent flavoenzymes, are found in most of bacterial species. Even if
Enterococcus faecalis
strains seems to present such activity because of their sensitivity to nitrofurans, no enzyme has been described.
Nitroreductases were separated of others reductases due to their capacity to reduce nitro compounds. They are further classified based on their preference in cofactor: NADH and/or NADPH. However, recently, azoreductases have been studied for their strong activity on nitro compounds, especially nitro pro-drugs. This result suggests a crossing in azo and nitro reductase activities. For the moment, no nitroreductase was demonstrated to possess azoreductase activity. But due to sequence divergence and activity specificity linked to substrates, activity prediction is not evident and biochemical characterisation remains necessary.
Identifying enzymes active on these two classes of compounds: azo and nitro is of interest to consider a common physiological role.
Results
Four putative nitroreductases, EF0404, EF0648, EF0655 and EF1181 from
Enterococcus faecalis
V583 were overexpressed as his-tagged recombinant proteins in
Escherichia coli
and purified following a native or a denaturing/renaturing protocol. EF0648, EF0655 and EF1181 showed nitroreductase activity and their cofactor preferences were in agreement with their protein sequence phylogeny. EF0404 showed both nitroreductase and azoreductase activity. Interestingly, the biochemical characteristics (substrate and cofactor specificity) of EF0404 resembled the properties of the known azoreductase AzoA. But its sequence matched within nitroreductase group, the same as EF0648.
Conclusions
We here demonstrate nitroreductase activity of the putative reductases identified in the
Enterococcus faecalis
V583 genome. We identified the first nitroreductase able to reduce directly an azo compound, while its protein sequence is close to others nitroreductases. Consequently, it highlights the difficulty in classifying these enzymes solely on the basis of protein sequence alignment and hereby the necessity to experimentally demonstrate the activity. The results provide additional data to consider a broader functionality of these reductases.
Journal Article