Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
739
result(s) for
"Nitrotyrosine"
Sort by:
Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats
2020
Endothelial dysfunction is one of the main age‐related arterial phenotypes responsible for cardiovascular disease (CVD) in older adults. This endothelial dysfunction results from decreased bioavailability of nitric oxide (NO) arising downstream of endothelial oxidative stress. In this study, we investigated the protective effect of anthocyanins and the underlying mechanism in rat thoracic aorta and human vascular endothelial cells in aging models. In vitro, cyanidin‐3‐rutinoside (C‐3‐R) and cyanidin‐3‐glucoside (C‐3‐G) inhibited the d‐galactose (d‐gal)‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p21, and p16INK4a. Anthocyanins blocked d‐gal‐induced reactive oxygen species (ROS) formation and NADPH oxidase activity. Anthocyanins reversed d‐gal‐mediated inhibition of endothelial nitric oxide synthase (eNOS) serine phosphorylation and SIRT1 expression, recovering NO level in endothelial cells. Also, SIRT1‐mediated eNOS deacetylation was shown to be involved in anthocyanin‐enhanced eNOS activity. In vivo, anthocyanin‐rich mulberry extract was administered to aging rats for 8 weeks. In vivo, mulberry extract alleviated endothelial senescence and oxidative stress in the aorta of aging rats. Consistently, mulberry extract also raised serum NO levels, increased phosphorylation of eNOS, increased SIRT1 expression, and reduced nitrotyrosine in aortas. The eNOS acetylation was higher in the aging group and was restored by mulberry extract treatment. Similarly, SIRT1 level associated with eNOS decreased in the aging group and was restored in aging plus mulberry group. These findings indicate that anthocyanins protect against endothelial senescence through enhanced NO bioavailability by regulating ROS formation and reducing eNOS uncoupling. Aging is known for its correlation with increased protein acetylation rates and the decline of sirtuin‐1 (SIRT1) deacetylation activity. This study demonstrated that anthocyanin‐rich mulberry extract reduces oxidative stress in aging vasculature and attenuates endothelial dysfunction through reversed inhibition of endothelial nitric oxide synthase (eNOS), serine phosphorylation, and SIRT1 expression, recovering NO level in senescence.
Journal Article
iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition
by
Chou, Kuo-Chen
,
Xu, Yan
,
Deng, Nai-Yang
in
Acids
,
Amino acid composition
,
Amino Acid Sequence
2014
Nitrotyrosine is one of the post-translational modifications (PTMs) in proteins that occurs when their tyrosine residue is nitrated. Compared with healthy people, a remarkably increased level of nitrotyrosine is detected in those suffering from rheumatoid arthritis, septic shock, and coeliac disease. Given an uncharacterized protein sequence that contains many tyrosine residues, which one of them can be nitrated and which one cannot? This is a challenging problem, not only directly related to in-depth understanding the PTM's mechanism but also to the nitrotyrosine-based drug development. Particularly, with the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop a high throughput tool in this regard. Here, a new predictor called \"iNitro-Tyr\" was developed by incorporating the position-specific dipeptide propensity into the general pseudo amino acid composition for discriminating the nitrotyrosine sites from non-nitrotyrosine sites in proteins. It was demonstrated via the rigorous jackknife tests that the new predictor not only can yield higher success rate but also is much more stable and less noisy. A web-server for iNitro-Tyr is accessible to the public at http://app.aporc.org/iNitro-Tyr/. For the convenience of most experimental scientists, we have further provided a protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the complicated mathematics that were presented in this paper just for the integrity of its development process. It has not escaped our notice that the approach presented here can be also used to deal with the other PTM sites in proteins.
Journal Article
Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function
by
Barak Boaz
,
Gong Guanyu
,
Wang, Xin
in
Autism
,
Calcineurin
,
Cyclic AMP response element-binding protein
2020
Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO•)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO• Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO•-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.
Journal Article
Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers
2018
Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion of Pten, p53, and Smad4, CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic–T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.
Journal Article
Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease
by
Shaikh, Maliha
,
Estes, Jacob D.
,
Forsyth, Christopher B.
in
Acute-Phase Proteins - metabolism
,
Aged
,
Aging
2011
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha-synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects.
Clinicaltrials.gov NCT01155492.
Journal Article
Oxidative stress parameters as biomarkers of bladder cancer development and progression
2021
The epidemiological studies confirm that the overproduction of free radical is an important factor of cancer induction as well as development, and loss of antioxidant systems efficiency is associated with an increased risk of carcinogenesis. While bladder cancer is the fourth most common type of cancer all over the world, there is little evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Our study aimed to investigate the plasma levels of typical markers of oxidative/nitrative stress depending on the clinical classification of bladder cancer differentiation and infiltration degree. We examined 40 patients with newly diagnosed bladder cancer and 20 healthy volunteers as a control group. We analysed the plasma levels of protein carbonyls, thiol groups, 3-nitrotyrosine, lipid peroxidation, as well as non-enzymatic plasma antioxidant capacity using DPPH
·
and ABTS
·
+
radicals. We confirmed that all analysed biomarkers are higher in enrolled BC patients than in healthy subjects. Furthermore, our findings demonstrate a positive correlation between the degree of bladder cancer progression and the level of oxidative stress, but no correlation in the case of NT-3. Based on obtained results, we might conclude that during carcinogenesis of the bladder increased oxidative damage of biomolecules is manifested. This indicates the participation of oxidative stress in the development of bladder cancer, and it is important the ensure the proper antioxidant protection.
Journal Article
Effect of tiger milk mushroom (Lignosus rhinocerus) supplementation on respiratory health, immunity and antioxidant status: an open-label prospective study
by
Tan, Eugenie Sin Sing
,
Leo, Teik Kee
,
Tan, Chung Keat
in
631/443/1784
,
692/700/2814
,
692/700/459/1994
2021
Tiger milk mushroom (TMM;
Lignosus rhinocerus
) have been used for a long time by indigenous communities in South East Asia regions as traditional medicine for different ailments, including respiratory disorders. The beneficial effects of TMM have been proven through in vivo and in vitro models, but these effects have yet to be validated in a clinical study. In this study, the beneficial effects of TMM supplementation were investigated in 50 voluntary participants. Participants were required to take 300 mg of TMM twice daily for three months. Level of interleukin 1β (IL-1β), interleukin 8 (IL-8), immunoglobulin A (IgA), total antioxidant capacity, malondialdehyde (MDA), 3-nitrotyrosine (3-NT), 8-hydroxydeoxyguanosine (8-OHdG), pulmonary function and respiratory symptoms were assessed during baseline and monthly follow-up visits. Results demonstrated that supplementation of TMM significantly (
p
< 0.05) suppressed the level of IL-1β, IL-8, MDA, as well as respiratory symptoms. In additional to that, TMM also significantly (
p
< 0.05) induced the level of IgA, total antioxidant capacity, as well as pulmonary function. Analyses of data indicated that gender and BMI were factors influencing the outcomes of antioxidant status. Collectively, our findings suggested that TMM supplementation effectively improves respiratory health, immunity and antioxidant status.
Journal Article
Salmonella Typhimurium outer membrane protein A (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane
by
Varshney, Umesh
,
Sah, Shivjee
,
Chakravortty, Dipshikha
in
Bacteria
,
Bacterial Outer Membrane
,
Bacterial Outer Membrane Proteins - metabolism
2022
Bacterial porins are highly conserved outer membrane proteins used in the selective transport of charged molecules across the membrane. In addition to their significant contributions to the pathogenesis of Gram-negative bacteria, their role(s) in salmonellosis remains elusive. In this study, we investigated the role of outer membrane protein A (OmpA), one of the major outer membrane porins of
Salmonella
, in the pathogenesis of
Salmonella
Typhimurium (STM). Our study revealed that OmpA plays an important role in the intracellular virulence of
Salmonella
. An
ompA
deficient strain of
Salmonella
(STM
ΔompA
) showed compromised proliferation in macrophages. We found that the SPI-2 encoded virulence factors such as
sifA
and
ssaV
are downregulated in STM
ΔompA
. The poor colocalization of STM
ΔompA
with LAMP-1 showed that disruption of SCV facilitated its release into the cytosol of macrophages, where it was assaulted by reactive nitrogen intermediates (RNI). The enhanced recruitment of nitrotyrosine on the cytosolic population of STM
ΔompAΔsifA
and
ΔompAΔssaV
compared to STM
ΔsifA
and
ΔssaV
showed an additional role of OmpA in protecting the bacteria from host nitrosative stress. Further, we showed that the generation of greater redox burst could be responsible for enhanced sensitivity of STM
ΔompA
to the nitrosative stress. The expression of several other outer membrane porins such as
ompC
,
ompD
, and
ompF
was upregulated in STM
ΔompA
. We found that in the absence of
ompA
, the enhanced expression of
ompF
increased the outer membrane porosity of
Salmonella
and made it susceptible to
in vitro
and
in vivo
nitrosative stress. Our study illustrates a novel mechanism for the strategic utilization of OmpA by
Salmonella
to protect itself from the nitrosative stress of macrophages.
Journal Article
Rectus Sheath Block (RSB) Analgesia Could Enhance Significantly the Patient Satisfaction Following Midline Laparotomy in Benign Disease and in Cancer: A Prospective Study With Special Reference to Nitrosative Stress Marker Nitrotyrosine (NT) Plasma Concentrations
2019
Our hypothesis was that rectus sheath block (RSB) analgesia could enhance satisfaction following midline laparotomy in patients with benign disease and cancer patients.
Initially, 56 patients were randomized into four groups; control group (n=12), single-dose (n=16), repeated-dose (n=12) and continuous infusion (n=16) RSB analgesia groups. The plasma concentrations of the NT marker were measured just before, immediately after and 24 h after operation. Patient satisfaction at 24 h postoperatively was filed on a 11-point numeric rating scale (SFS
; 0=fully unsatisfied; 10=fully satisfied).
The RSB analgesia significantly enhanced the SFS
scores in the study groups (p=0.001). The median plasma NT concentrations (pg/ml) following surgery (POP1) were significantly lower in patients with cancer versus patients with benign disease (5.3 vs. 7.6, p=0.008). Jitter plots of the individual SFS
values versus plasma NT concentrations were significantly correlated in benign and cancer patients (r=-0.284, p=0.028).
The RSB analgesia could significantly enhance patient satisfaction following midline laparotomy. Plasma NT concentrations versus patient satisfaction following surgery are significantly correlated in benign disease and cancer.
Journal Article
Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation
2019
Acute respiratory distress syndrome (ARDS) is characterized by an excessive acute inflammatory response in lung parenchyma, which ultimately leads to refractory hypoxemia. One of the earliest abnormalities seen in lung injury is the elevated levels of inflammatory cytokines, among them, the soluble tumor necrosis factor (TNF-α) has a key role, which exerts cytotoxicity in epithelial and endothelial cells thus exacerbates edema. The bacterial lipopolysaccharide (LPS) was used both in vitro (RAW 264.7, THP-1, MLE-12, A549, and BEAS-2B) and in vivo (C57BL/6 mice), as it activates a plethora of overlapping inflammatory signaling pathways involved in ARDS. Nimbolide is a chemical constituent of
Azadirachta indica
, which contains multiple biological properties, while its role in ARDS is elusive. Herein, we have investigated the protective effects of nimbolide in abrogating the complications associated with ARDS. We showed that nimbolide markedly suppressed the nitrosative-oxidative stress, inflammatory cytokines, and chemokines expression by suppressing iNOS, myeloperoxidase, and nitrotyrosine expression. Moreover, nimbolide mitigated the migration of neutrophils and mast cells whilst normalizing the LPS-induced hypothermia. Also, nimbolide modulated the expression of epigenetic regulators with multiple HDAC inhibitory activity by suppressing the nuclear translocation of NF-κB and HDAC-3. We extended our studies using molecular docking studies, which demonstrated a strong interaction between nimbolide and TNF-α. Additionally, we showed that treatment with nimbolide increased GSH, Nrf-2, SOD-1, and HO-1 protein expression; concomitantly abrogated the LPS-triggered TNF-α, p38 MAPK, mTOR, and GSK-3β protein expression. Collectively, these results indicate that TNF-α-regulated NF-κB and HDAC-3 crosstalk was ameliorated by nimbolide with promising anti-nitrosative, antioxidant, and anti-inflammatory properties in LPS-induced ARDS.
Journal Article