Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,985
result(s) for
"Non-alcoholic Fatty Liver Disease - metabolism"
Sort by:
Phase 3 Trial of Semaglutide in Metabolic Dysfunction–Associated Steatohepatitis
2025
Semaglutide, a glucagon-like peptide-1 receptor agonist, is a candidate for the treatment of metabolic dysfunction-associated steatohepatitis (MASH).
In this ongoing phase 3, multicenter, randomized, double-blind, placebo-controlled trial, we assigned 1197 patients with biopsy-defined MASH and fibrosis stage 2 or 3 in a 2:1 ratio to receive once-weekly subcutaneous semaglutide at a dose of 2.4 mg or placebo for 240 weeks. The results of a planned interim analysis conducted at week 72 involving the first 800 patients are reported here (part 1). The primary end points for part 1 were the resolution of steatohepatitis without worsening of liver fibrosis and reduction in liver fibrosis without worsening of steatohepatitis.
Resolution of steatohepatitis without worsening of fibrosis occurred in 62.9% of the 534 patients in the semaglutide group and in 34.3% of the 266 patients in the placebo group (estimated difference, 28.7 percentage points; 95% confidence interval [CI], 21.1 to 36.2; P<0.001). A reduction in liver fibrosis without worsening of steatohepatitis was reported in 36.8% of the patients in the semaglutide group and in 22.4% of those in the placebo group (estimated difference, 14.4 percentage points; 95% CI, 7.5 to 21.3; P<0.001). Results for the three secondary outcomes that were included in the plan to adjust for multiple testing were as follows: combined resolution of steatohepatitis and reduction in liver fibrosis was reported in 32.7% of the patients in the semaglutide group and in 16.1% of those in the placebo group (estimated difference, 16.5 percentage points; 95% CI, 10.2 to 22.8; P<0.001). The mean change in body weight was -10.5% with semaglutide and -2.0% with placebo (estimated difference, -8.5 percentage points; 95% CI, -9.6 to -7.4; P<0.001). Mean changes in bodily pain scores did not differ significantly between the two groups. Gastrointestinal adverse events were more common in the semaglutide group.
In patients with MASH and moderate or advanced liver fibrosis, once-weekly semaglutide at a dose of 2.4 mg improved liver histologic results. (Funded by Novo Nordisk; ClinicalTrials.gov number, NCT04822181.).
Journal Article
Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease
by
Lykkesfeldt, Jens
,
Tveden-Nyborg, Pernille
,
Ipsen, David Højland
in
Accumulation
,
Animals
,
Apoptosis
2018
Non-alcoholic fatty liver disease (NAFLD) is currently the world’s most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.
Journal Article
Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss
by
Yang, Wah
,
Pintar, Tadeja
,
Singhal, Rishi
in
Bariatric surgery
,
Conservative therapy
,
Diabetes
2022
Given the increasing prevalence of diabetes and obesity worldwide, the deleterious effects of non-alcoholic fatty liver disease (NAFLD) are becoming a growing challenge for public health. NAFLD is the most common chronic liver disease in the Western world. NAFLD is closely associated with metabolic disorders, including central obesity, dyslipidaemia, hypertension, hyperglycaemia and persistent abnormalities of liver function tests.
In general NAFLD is a common denominer for a broad spectrum of damage to the liver, which can be due to hepatocyte injury, inflammatory processes and fibrosis. This is normally seen on liver biopsy and can range from milder forms (steatosis) to the more severe forms (non-alcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis and liver failure). In these patients, advanced fibrosis is the major predictor of morbidity and liver-related mortality, and an accurate diagnosis of NASH and NAFLD is mandatory. Histologic evaluation with liver biopsy remains the gold standard to diagnose NAFLD. Diagnosis of NAFLD is defined as presence of hepatic steatosis, ballooning and lobular inflammation with or without fibrosis. Weight loss, dietary modification, and the treatment of underlying metabolic syndrome remain the mainstays of therapy once the diagnosis is established. Dietary recommendations and lifestyle interventions, weight loss, and the treatment of underlying metabolic syndrome remain the mainstays of therapy once the diagnosis is established with promising results but are difficult to maintain. Pioglitazone and vitamin E are recommended by guidelines in selected patients. This review gives an overview of NAFLD and its treatment options.
Journal Article
Molecular pathways of nonalcoholic fatty liver disease development and progression
by
Razori, María Valeria
,
Bessone, Fernando
,
Roma, Marcelo G
in
Abnormalities
,
Acid resistance
,
Adipose tissue
2019
Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the “first hit” for NAFLD development. NAFLD progression seems to involve the occurrence of “parallel, multiple-hit” injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.
Journal Article
NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications
by
Tilg, Herbert
,
Byrne, Christopher D
,
Targher, Giovanni
in
Atherosclerosis
,
Biopsy
,
Calcification (ectopic)
2020
Non-alcoholic fatty liver disease (NAFLD) is a public health problem, affecting up to a third of the world’s adult population. Several cohort studies have consistently documented that NAFLD (especially in its more advanced forms) is associated with a higher risk of all-cause mortality and that the leading causes of death among patients with NAFLD are cardiovascular diseases (CVDs), followed by extrahepatic malignancies and liver-related complications. A growing body of evidence also indicates that NAFLD is strongly associated with an increased risk of major CVD events and other cardiac complications (ie, cardiomyopathy, cardiac valvular calcification and cardiac arrhythmias), independently of traditional cardiovascular risk factors. This narrative review provides an overview of the literature on: (1) the evidence for an association between NAFLD and increased risk of cardiovascular, cardiac and arrhythmic complications, (2) the putative pathophysiological mechanisms linking NAFLD to CVD and other cardiac complications and (3) the current pharmacological treatments for NAFLD that might also benefit or adversely affect risk of CVD.
Journal Article
Metabolic Dysfunction–Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options
2024
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from “nonalcoholic fatty liver disease” (NAFLD) to “metabolic dysfunction-associated fatty liver disease” (MAFLD) and, finally, “metabolic dysfunction-associated steatotic liver disease” (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut–liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Journal Article
The liver as an endocrine organ - linking NAFLD and insulin resistance
by
Watt, Matthew J
,
Miotto, Paula M
,
Montgomery, Magdalene K
in
Adipose tissue
,
Animals
,
Biological evolution
2019
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry “omics” approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of “hepatokine” biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Journal Article
The Natural Course of Non-Alcoholic Fatty Liver Disease
by
Calzadilla Bertot, Luis
,
Adams, Leon
in
Carcinoma, Hepatocellular - metabolism
,
Carcinoma, Hepatocellular - mortality
,
Carcinoma, Hepatocellular - pathology
2016
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, paralleling the epidemic of obesity and Type 2 diabetes mellitus (T2DM). NAFLD exhibits a histological spectrum, ranging from “bland steatosis” to the more aggressive necro-inflammatory form, non-alcoholic steatohepatitis (NASH) which may accumulate fibrosis to result in cirrhosis. Emerging data suggests fibrosis, rather than NASH per se, to be the most important histological predictor of liver and non-liver related death. Nevertheless, only a small proportion of individuals develop cirrhosis, however the large proportion of the population affected by NAFLD has led to predictions that NAFLD will become a leading cause of end stage liver disease, hepatocellular carcinoma (HCC), and indication for liver transplantation. HCC may arise in non-cirrhotic liver in the setting of NAFLD and is associated with the presence of the metabolic syndrome (MetS) and male gender. The MetS and its components also play a key role in the histological progression of NAFLD, however other genetic and environmental factors may also influence the natural history. The importance of NAFLD in terms of overall survival extends beyond the liver where cardiovascular disease and malignancy represents additional important causes of death.
Journal Article
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity
2017
IgA
+
B cells expressing programmed death ligand 1 (PD-L1) and interleukin 10 accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease where they promote the progression to hepatocellular carcinoma by limiting the local activation of PD-1-expressing CD8
+
T cells.
The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA
+
) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8
+
T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8
+
T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA
+
cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8
+
T-lymphocyte activation as a tumour-promoting mechanism.
Increased cancer risk in fatty livers
Cancer progression beyond the early stages is thought to be caused in some cases by adaptive immunity, but its role remains controversial. In this study, Michael Karin and colleagues show that PD-L1-expressing IgA
+
B cells accumulate in the inflamed livers of humans and mice with non-alcoholic fatty liver disease. The inflammation-induced IgA
+
cells promote the progression to hepatocellular carcinoma by suppressing liver cytotoxic CD8
+
T cells that prevent the emergence of this aggressive tumour.
Journal Article
GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives
by
Sasso, Ferdinando Carlo
,
Tortorella, Giovanni
,
Epifani, Raffaella
in
Appetite
,
Diabetes
,
Diabetes Mellitus, Type 2 - pathology
2023
To date, non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease, affecting up to 70% of patients with diabetes. Currently, there are no specific drugs available for its treatment. Beyond their anti-hyperglycemic effect and the surprising role of cardio- and nephroprotection, GLP-1 receptor agonists (GLP-1 RAs) have shown a significant impact on body weight and clinical, biochemical and histological markers of fatty liver and fibrosis in patients with NAFLD. Therefore, GLP-1 RAs could be a weapon for the treatment of both diabetes mellitus and NAFLD. The aim of this review is to summarize the evidence currently available on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
Journal Article