Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,255 result(s) for "Nonparametric inference"
Sort by:
One-dimensional empirical measures, order statistics, and Kantorovich transport distances
This work is devoted to the study of rates of convergence of the empirical measures \\mu_{n} = \\frac {1}{n} \\sum_{k=1}^n \\delta_{X_k}, n \\geq 1, over a sample (X_{k})_{k \\geq 1} of independent identically distributed real-valued random variables towards the common distribution \\mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) or \\big [ \\mathbb{E}(W_{p}^p(\\mu_{n},\\mu )) \\big ]^1/p in terms of moments and analytic conditions on the measure \\mu and its distribution function. The study describes a variety of rates, from the standard one \\frac {1}{\\sqrt n} to slower rates, and both lower and upper-bounds on \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
Efficient Estimation of a Semiparametric Partially Linear Varying Coefficient Model
In this paper we propose a general series method to estimate a semiparametric partially linear varying coefficient model. We establish the consistency and √n-normality property of the estimator of the finitedimensional parameters of the model. We further show that, when the error is conditionally homoskedastic, this estimator is semiparametrically efficient in the sense that the inverse of the asymptotic variance of the estimator of the finite-dimensional parameter reaches the semiparametric efficiency bound of this model. A small-scale simulation is reported to examine the finite sample performance of the proposed estimator, and an empirical application is presented to illustrate the usefulness of the proposed method in practice. We also discuss how to obtain an efficient estimation result when the error is conditional heteroskedastic.
OPTIMAL INFERENCE IN A CLASS OF REGRESSION MODELS
We consider the problem of constructing confidence intervals (CIs) for a linear functional of a regression function, such as its value at a point, the regression discontinuity parameter, or a regression coefficient in a linear or partly linear regression. Our main assumption is that the regression function is known to lie in a convex function class, which covers most smoothness and/or shape assumptions used in econometrics. We derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with known variance. We show that these results translate to uniform (over the function class) asymptotic results when the error distribution is not known. When the function class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to efficient at smooth regression functions. This implies, in particular, that it is impossible to form CIs that are substantively tighter using data-dependent tuning parameters, and maintain coverage over the whole function class. We specialize our results to inference on the regression discontinuity parameter, and illustrate them in simulations and an empirical application.
Estimation of a Convex Function: Characterizations and Asymptotic Theory
We study nonparametric estimation of convex regression and density functions by methods of least squares (in the regression and density cases) and maximum likelihood (in the density estimation case). We provide characterizations of these estimators, prove that they are consistent and establish their asymptotic distributions at a fixed point of positive curvature of the functions estimated. The asymptotic distribution theory relies on the existence of an \"invelope function\" for integrated two-sided Brownian motion +t4which is established in a companion paper by Groeneboom, Jongbloed and Wellner.
Nonparametric Estimation of Mean-Squared Prediction Error in Nested-Error Regression Models
Nested-error regression models are widely used for analyzing clustered data. For example, they are often applied to two-stage sample surveys, and in biology and econometrics. Prediction is usually the main goal of such analyses, and mean-squared prediction error is the main way in which prediction performance is measured. In this paper we suggest a new approach to estimating mean-squared prediction error. We introduce a matched-moment, double-bootstrap algorithm, enabling the notorious underestimation of the naive mean-squared error estimator to be substantially reduced. Our approach does not require specific assumptions about the distributions of errors. Additionally, it is simple and easy to apply. This is achieved through using Monte Carlo simulation to implicitly develop formulae which, in a more conventional approach, would be derived laboriously by mathematical arguments.
Self-concordance for empirical likelihood
The usual approach to computing empirical likelihood for the mean uses Newton's method after eliminating a Lagrange multiplier and replacing the function — log(x) by a quadratic Taylor approximation to the left of 1/n. This paper replaces the quadratic approximation by a quartic. The result is a selfconcordant function for which Newton's method with backtracking has theoretical convergence guarantees. L'approche classique pour calculer la vraisemblance empirique pour la moyenne fait appel à la méthode de Newton, après l'élimination d'un multiplicateur de Lagrange et le remplacement de la fonction — log(x) par une approximation quadratique de Taylor à gauche de 1/n. Dans cet article, l'auteur remplace l'approximation quadratique par une approximation quartique. Il obtient une fonction autoconcordante pour laquelle la méthode de Newton avec retour sur trace offre une garantie théorique de convergence.
Semiparametrically Efficient Rank-Based Inference for Shape II. Optimal R-Estimation of Shape
A class of R-estimators based on the concepts of multivariate signed ranks and the optimal rank-based tests developed in Hallin and Paindaveine [Ann. Statist. 34 (2006) 2707-2756] is proposed for the estimation of the shape matrix of an elliptical distribution. These R-estimators are root-n consistent under any radial density g, without any moment assumptions, and semiparametrically efficient at some prespecified density f. When based on normal scores, they are uniformly more efficient than the traditional normal-theory estimator based on empirical covariance matrices (the asymptotic normality of which, moreover, requires finite moments of order four), irrespective of the actual underlying elliptical density. They rely on an original rank-based version of Le Cam's one-step methodology which avoids the unpleasant nonparametric estimation of cross-information quantities that is generally required in the context of R-estimation. Although they are not strictly affine-equivariant, they are shown to be equivariant in a weak asymptotic sense. Simulations confirm their feasibility and excellent finite-sample performance.
Nonparametric Quasi-Maximum Likelihood Estimation for Gaussian Locally Stationary Processes
This paper deals with nonparametric maximum likelihood estimation for Gaussian locally stationary processes. Our nonparametric MLE is constructed by minimizing a frequency domain likelihood over a class of functions. The asymptotic behavior of the resulting estimator is studied. The results depend on the richness of the class of functions. Both sieve estimation and global estimation are considered. Our results apply, in particular, to estimation under shape constraints. As an example, autoregressive model fitting with a monotonic variance function is discussed in detail, including algorithmic considerations. A key technical tool is the time-varying empirical spectral process indexed by functions. For this process, a Bernstein-type exponential inequality and a central limit theorem are derived. These results for empirical spectral processes are of independent interest.
Bayesian Inference for Kendall's Rank Correlation Coefficient
This article outlines a Bayesian methodology to estimate and test the Kendall rank correlation coefficient τ. The nonparametric nature of rank data implies the absence of a generative model and the lack of an explicit likelihood function. These challenges can be overcome by modeling test statistics rather than data. We also introduce a method for obtaining a default prior distribution. The combined result is an inferential methodology that yields a posterior distribution for Kendall's τ.
Density Level Sets: Asymptotics, Inference, and Visualization
We study the plug-in estimator for density level sets under Hausdorff loss. We derive asymptotic theory for this estimator, and based on this theory, we develop two bootstrap confidence regions for level sets. We introduce a new technique for visualizing density level sets, even in multidimensions, which is easy to interpret and efficient to compute. Supplementary materials for this article are available online.