Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
152 result(s) for "Notch4 protein"
Sort by:
Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling
Podocyte injury is a major determinant of proteinuric kidney disease and the identification of potential therapeutic targets for preventing podocyte injury has clinical importance. Here, we show that histone deacetylase Sirt6 protects against podocyte injury through epigenetic regulation of Notch signaling. Sirt6 is downregulated in renal biopsies from patients with podocytopathies and its expression correlates with glomerular filtration rate. Podocyte-specific deletion of Sirt6 exacerbates podocyte injury and proteinuria in two independent mouse models, diabetic nephropathy, and adriamycin-induced nephropathy. Sirt6 has pleiotropic protective actions in podocytes, including anti-inflammatory and anti-apoptotic effects, is involved in actin cytoskeleton maintenance and promotes autophagy. Sirt6 also reduces urokinase plasminogen activator receptor expression, which is a key factor for podocyte foot process effacement and proteinuria. Mechanistically, Sirt6 inhibits Notch1 and Notch4 transcription by deacetylating histone H3K9. We propose Sirt6 as a potential therapeutic target for the treatment of proteinuric kidney disease. Podocytes are essential components of the renal glomerular filtration barrier and podocyte dysfunction leads to proteinuric kidney disease. Here Liu et al. show that Sirt6 protects podocytes from apoptosis and inflammation by increasing autophagic flux through inhibition of the Notch pathway.
FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4
Background Optimising breast cancer treatment remains a challenge. Resistance to therapy is a major problem in both ER- and ER+ breast cancer. Tumour recurrence after chemotherapy and/or targeted therapy leads to more aggressive tumours with enhanced metastatic ability. Self-renewing cancer stem cells (CSCs) have been implicated in treatment resistance, recurrence and the development of metastatic disease. Methods In this study, we utilised in vitro, in vivo and ex vivo breast cancer models using ER+ MCF-7 and ER- MDA-MB-231 cells, as well as solid and metastatic breast cancer patient samples, to interrogate the effects of FKBPL and its peptide therapeutics on metastasis, endocrine therapy resistant CSCs and DLL4 and Notch4 expression. The effects of FKBPL overexpression or peptide treatment were assessed using a t-test or one-way ANOVA with Dunnett’s multiple comparison test. Results We demonstrated that FKBPL overexpression or treatment with FKBPL-based therapeutics (AD-01, pre-clinical peptide /ALM201, clinical peptide) inhibit i) CSCs in both ER+ and ER- breast cancer, ii) cancer metastasis in a triple negative breast cancer metastasis model and iii) endocrine therapy resistant CSCs in ER+ breast cancer, via modulation of the DLL4 and Notch4 protein and/or mRNA expression. AD-01 was effective at reducing triple negative MDA-MB-231 breast cancer cell migration ( n  ≥ 3, p  < 0.05) and invasion ( n  ≥ 3, p  < 0.001) and this was translated in vivo where AD-01 inhibited breast cancer metastasis in MDA-MB-231-lucD3H1 in vivo model ( p  < 0.05). In ER+ MCF-7 cells and primary breast tumour samples, we demonstrated that ALM201 inhibits endocrine therapy resistant mammospheres, representative of CSC content ( n  ≥ 3, p  < 0.05). Whilst an in vivo limiting dilution assay, using SCID mice, demonstrated that ALM201 alone or in combination with tamoxifen was very effective at delaying tumour recurrence by 12 ( p  < 0.05) or 21 days ( p  < 0.001), respectively, by reducing the number of CSCs. The potential mechanism of action, in addition to CD44, involves downregulation of DLL4 and Notch4. Conclusion This study demonstrates, for the first time, the pre-clinical activity of novel systemic anti-cancer therapeutic peptides, ALM201 and AD-01, in the metastatic setting, and highlights their impact on endocrine therapy resistant CSCs; both areas of unmet clinical need.
Polymorphisms and gene expression of Notch4 in pulmonary tuberculosis
Tuberculosis (TB) is a serious public health problem to human health, but the pathogenesis of TB remains elusive. To identify novel candidate genes associated with TB susceptibility, we performed a population-based case control study to genotype 41SNPs spanning 21 genes in 435 pulmonary TB patients and 375 health donors from China. We found Notch4 gene rs206018 and rs422951 polymorphisms were associated with susceptibility to pulmonary tuberculosis. The association was validated in another independent cohort including 790 TB patients and 1,190 healthy controls. Moreover, we identified that the rs206018 C allele was associated with higher level of Notch4 in PBMCs from pulmonary TB patients. Furthermore, Notch4 expression increased in TB patients and higher Notch4 expression correlated with the severer pulmonary TB. Finally, we explored the origin and signaling pathways involved in the regulation of Notch4 expression in response to Mycobacterium tuberculosis (Mtb) infection. We determine that Mtb induced Notch4 and its ligand Jagged1expression in macrophages, and Notch4 through TLR2/P38 signaling pathway and Jagged1 through TLR2/ERK signaling pathway. Our work further strengthens that Notch4 underlay an increased risk of TB in humans and is involved in the occurrence and development of TB, which could serve as a novel target for the host-targeted therapy of TB.
The Notch1/CD22 signaling axis disrupts Treg function in SARS-CoV-2–associated multisystem inflammatory syndrome in children
Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.
Notch4+ cancer stem‐like cells promote the metastatic and invasive ability of melanoma
Sphere formation in conditioned serum‐free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem‐like cells, also known as tumor‐initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem‐like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4high B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial–mesenchymal transition (EMT)‐associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE‐cadherin and the overexpression of E‐cadherin was observed in human melanoma A375 and MUM‐2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ‐secretase inhibitor, DAPT. Mechanistically, the re‐overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE‐cadherin expression and a decrease in E‐cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells. We used an Agilent Gene Expression microarray to investigate the gene expression profile of melanoma cancer stem‐like cells and found high level of Notch4 expression is related to the cancer stem‐like cells. Then we explored the roles and mechanism of Notch4 by biological method and Immunohistochemistry in melanoma.
Methylation status of CpG sites in the NOTCH4 promoter region regulates NOTCH4 expression in patients with tetralogy of Fallot
Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease (CHD). Although a lower methylation level of whole genome has been demonstrated in TOF patients, little is known regarding the DNA methylation changes in specific gene and its associations with TOF development. NOTCH4 is a mediator of the Notch signalling pathway that plays an important role in normal cardiac development. However, the role of epigenetic regulation of the NOTCH4 gene in the pathogenesis of TOF remains unclear. Considering the NOTCH4 low mutation frequency and reduced expression in the TOF patients, we hypothesized that abnormal DNA methylation change of NOTCH4 gene may influence its expression and responsible for TOF development. In this study, we measured the promoter methylation status of NOTCH4 and was measured and its regulation mechanism was explored, which may be related to TOF disease. Additionally, the promoter methylation statuses of NOTCH4 was measured in order to further understand epigenetic mechanisms that may serve a role in the development of TOF. Immunohistochemical analysis was used to examine NOTCH4 expression in right ventricular outflow tract myocardial tissues in patients with TOF. Compared with healthy controls, patients with TOF displayed significantly reduced in NOTCH4 expression (P=0.0055). Moreover, bisulphite sequencing suggested that the methylation levels of CpG site 2 in the NOTCH4 promoter was significantly higher in the patients than in the controls (P=0.0459). NOTCH4 expression was negatively associated with CpG site 2 methylation levels (r=−0.51; P=0.01). ETS1 transcription factor can serve as transcriptional activators by binding to specific DNA sequences of target genes, such as DLL4 and NOTCH4, which serves an important role in normal heart development. Dual-luciferase reporter and electrophoretic mobility shift assays indicated that the ETS1 transcription factor could bind to the NOTCH4 promoter region. However, binding of ETS1 to the NOTCH4 promoter was abrogated by methylation at the putative ETS1 binding sites. These findings suggested that decreased NOTCH4 expression in patients with TOF may be associated with hypermethylation of CpG site 2 in the NOTCH4 promoter region, due to impaired binding of ETS1.
Use of antisense oligonucleotides to target Notch3 in skeletal cells
Notch receptors are determinants of cell fate and function, and play an important role in the regulation of bone development and skeletal remodeling. Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. LMS presents with neurological developmental abnormalities and bone loss. We created a mouse model ( Notch3 em1Ecan ) harboring a 6691TAATGA mutation in the Notch3 locus, and heterozygous Notch3 em1Ecan mice exhibit cancellous and cortical bone osteopenia. In the present work, we explored whether Notch3 antisense oligonucleotides (ASO) downregulate Notch3 and have the potential to ameliorate the osteopenia of Notch3 em1Ecan mice. Notch3 ASOs decreased the expression of Notch3 wild type and Notch3 6691-TAATGA mutant mRNA expressed by Notch3 em1Ecan mice in osteoblast cultures without evidence of cellular toxicity. The effect was specific since ASOs did not downregulate Notch1 , Notch2 or Notch4 . The expression of Notch3 wild type and Notch3 6691-TAATGA mutant transcripts also was decreased in bone marrow stromal cells and osteocytes following exposure to Notch3 ASOs. In vivo , the subcutaneous administration of Notch3 ASOs at 25 to 50 mg/Kg decreased Notch3 mRNA in the liver, heart and bone. Microcomputed tomography demonstrated that the administration of Notch3 ASOs ameliorates the cortical osteopenia of Notch3 em1Ecan mice, and ASOs decreased femoral cortical porosity and increased cortical thickness and bone volume. However, the administration of Notch3 ASOs did not ameliorate the cancellous bone osteopenia of Notch em1Ecan mice. In conclusion, Notch3 ASOs downregulate Notch3 expression in skeletal cells and their systemic administration ameliorates cortical osteopenia in Notch3 em1Ecan mice; as such ASOs may become useful strategies in the management of skeletal diseases affected by Notch gain-of-function.
NOTCH2 participates in Jagged1-induced osteogenic differentiation in human periodontal ligament cells
Jagged1 activates Notch signaling and subsequently promotes osteogenic differentiation in human periodontal ligament cells (hPDLs). The present study investigated the participation of the Notch receptor, NOTCH2, in the Jagged1-induced osteogenic differentiation in hPDLs. NOTCH2 and NOTCH4 mRNA expression levels increased during hPDL osteogenic differentiation. However, the endogenous NOTCH2 expression levels were markedly higher compared with NOTCH4. NOTCH2 expression knockdown using shRNA in hPDLs did not dramatically alter their proliferation or osteogenic differentiation compared with the shRNA control. After seeding on Jagged1-immobilized surfaces and maintaining the hPDLs in osteogenic medium, HES1 and HEY1 mRNA levels were markedly reduced in the sh NOTCH2 -transduced cells compared with the shControl group. Further, sh NOTCH2 -transduced cells exhibited less alkaline phosphatase enzymatic activity and in vitro mineralization than the shControl cells when exposed to Jagged1. MSX2 and COL1A1 mRNA expression after Jagged1 activation were reduced in sh NOTCH2- transduced cells. Endogenous Notch signaling inhibition using a γ-secretase inhibitor (DAPT) attenuated mineralization in hPDLs. DAPT treatment significantly promoted TWIST1 , but decreased ALP , mRNA expression, compared with the control. In conclusion, Notch signaling is involved in hPDL osteogenic differentiation. Moreover, NOTCH2 participates in the mechanism by which Jagged1 induced osteogenic differentiation in hPDLs.
A common variant of the NOTCH4 gene modulates functional connectivity of the occipital cortex and its relationship with schizotypal traits
Background Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. Methods In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). Results Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. Conclusion Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.
Genetic evidence for association of NOTCH4 variant rs2071287 with schizophrenia susceptibility in the North Indian population
Background: Neurogenic locus notch homolog 4 (NOTCH4) regulates signaling pathways associated with neuronal maturation, a process involved in the development and patterning of the central nervous system. The NOTCH4 gene has also been identified as a possible susceptibility gene for schizophrenia (SCZ). Aim: The study aimed to determine the association of NOTCH4 polymorphisms with the risk of SCZ in the North Indian population of the Jammu region. Methods: The single nucleotide polymorphism genotyping for NOTCH4 variant rs2071287 was done by Sanger's sequencing method, and the other variant rs3131296 was done by TaqMan assay method for 207 SCZ cases and 304 healthy controls of North Indian origin. Results: This association study suggested that the rs2071287 was found to be significantly associated with SCZ. Moreover, the GG genotype of rs2071287 was observed to be associated with a higher risk for SCZ (P-value = 6.45 × 10 − 5; OR = 1.71; 95% CI, 1.31-2.24). Conclusion: To establish the potential biomarker role of this variant, large-scale association analyses in other populations is required.