Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
431 result(s) for "Nucleoids"
Sort by:
HBD1 protein with a tandem repeat of two HMG-box domains is a DNA clip to organize chloroplast nucleoids in Chlamydomonas reinhardtii
Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA–protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9–mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.
Evaluation and development of deep neural networks for image super-resolution in optical microscopy
Deep neural networks have enabled astonishing transformations from low-resolution (LR) to super-resolved images. However, whether, and under what imaging conditions, such deep-learning models outperform super-resolution (SR) microscopy is poorly explored. Here, using multimodality structured illumination microscopy (SIM), we first provide an extensive dataset of LR–SR image pairs and evaluate the deep-learning SR models in terms of structural complexity, signal-to-noise ratio and upscaling factor. Second, we devise the deep Fourier channel attention network (DFCAN), which leverages the frequency content difference across distinct features to learn precise hierarchical representations of high-frequency information about diverse biological structures. Third, we show that DFCAN’s Fourier domain focalization enables robust reconstruction of SIM images under low signal-to-noise ratio conditions. We demonstrate that DFCAN achieves comparable image quality to SIM over a tenfold longer duration in multicolor live-cell imaging experiments, which reveal the detailed structures of mitochondrial cristae and nucleoids and the interaction dynamics of organelles and cytoskeleton.This study explores the performance of deep-learning models for super-resolution imaging and introduces models that utilize frequency content information in the Fourier domain to improve SIM reconstruction under low-SNR conditions.
Mitochondrial nucleoid trafficking regulated by the inner-membrane AAA-ATPase ATAD3A modulates respiratory complex formation
Mitochondria have their own DNA (mtDNA), which encodes essential respiratory subunits. Under live imaging, mitochondrial nucleoids, composed of several copies of mtDNA and DNA-binding proteins, such as mitochondrial transcription factor A (TFAM), actively move inside mitochondria and change the morphology, in concert with mitochondrial membrane fission. Here we found the mitochondrial inner membraneanchored AAA-ATPase protein ATAD3A mediates the nucleoid dynamics. Its ATPase domain exposed to the matrix binds directly to TFAM and mediates nucleoid trafficking along mitochondria by ATP hydrolysis. Nucleoid trafficking also required ATAD3A oligomerization via an interaction between the coiled-coil domains in intermembrane space. In ATAD3A deficiency, impaired nucleoid trafficking repressed the clustered and enlarged nucleoids observed in mitochondrial fission-deficient cells resulted in dispersed distribution of small nucleoids observed throughout the mitochondrial network, and this enhanced respiratory complex formation. Thus, mitochondrial fission and nucleoid trafficking cooperatively determine the size, number, and distribution of nucleoids in mitochondrial network, which should modulate respiratory complex formation.
mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana
• Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. • We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. • Here we discover that SHOT1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. • Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Live-cell STED nanoscopy of mitochondrial cristae
Mitochondria are highly dynamic organelles that exhibit a complex inner architecture. They exhibit a smooth outer membrane and a highly convoluted inner membrane that forms invaginations called cristae. Imaging cristae in living cells poses a formidable challenge for super-resolution light microscopy. Relying on a cell line stably expressing the mitochondrial protein COX8A fused to the SNAP-tag and using STED ( st imulated e mission d epletion) nanoscopy, we demonstrate the visualization of cristae dynamics in cultivated human cells. We show that in human HeLa cells lamellar cristae are often arranged in groups separated by voids that are generally occupied by mitochondrial nucleoids.
Two Plastidial Coiled-Coil Proteins Are Essential for Normal Starch Granule Initiation in Arabidopsis
The mechanism of starch granule initiation in chloroplasts is not fully understood. Here, we aimed to build on our recent discovery that PROTEIN TARGETING TO STARCH (PTST) family members, PTST2 and PTST3, are key players in starch granule initiation, by identifying and characterizing additional proteins involved in the process in Arabidopsis thaliana chloroplasts. Using immunoprecipitation and mass spectrometry, we demonstrate that PTST2 interacts with two plastidial coiled-coil proteins. Surprisingly, one of the proteins is the thylakoid-associated MAR BINDING FILAMENT-LIKE PROTEIN1 (MFP1), which was proposed to bind plastid nucleoids. The other protein, MYOSIN-RESEMBLING CHLOROPLAST PROTEIN (MRC), contains long coiled coils and no known domains. Whereas wild-type chloroplasts contained multiple starch granules, only one large granule was observed in most chloroplasts of the mfp1 and mrc mutants. The mfp1 mrc double mutant had a higher proportion of chloroplasts containing no visible granule than either single mutant and accumulated ADP-glucose, the substrate for starch synthesis. PTST2 was partially associated with the thylakoid membranes in wild-type plants, and fluorescently tagged PTST2 was located in numerous discrete patches within the chloroplast in which MFP1 was also located. In the mfp1 mutant, PTST2 was not associated with the thylakoids and formed discrete puncta, suggesting that MFP1 is necessary for normal PTST2 localization. Overall, we reveal that proper granule initiation requires the presence of MFP1 and MRC, and the correct location of PTST2.
ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation
A human cell contains hundreds to thousands of mitochondrial DNA (mtDNA) packaged into nucleoids. Currently, the segregation and allocation of nucleoids are thought to be passively determined by mitochondrial fusion and division. Here we provide evidence, using live-cell super-resolution imaging, that nucleoids can be actively transported via KIF5B-driven mitochondrial dynamic tubulation (MDT) activities that predominantly occur at the ER-mitochondria contact sites (EMCS). We further demonstrate that a mitochondrial inner membrane protein complex MICOS links nucleoids to Miro1, a KIF5B receptor on mitochondria, at the EMCS. We show that such active transportation is a mechanism essential for the proper distribution of nucleoids in the peripheral zone of the cell. Together, our work identifies an active transportation mechanism of nucleoids, with EMCS serving as a key platform for the interplay of nucleoids, MICOS, Miro1, and KIF5B to coordinate nucleoids segregation and transportation. Mitochondrial DNA is found in nucleoids, which are distributed throughout the mitochondrial network and are thought to be passively distributed. Here, the authors show that mitochondrial dynamic tubulation at ER-mitochondria contact sites actively transports nucleoids.
Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration
Oxidative stress develops as a response to injury and reflects a breach in the cell’s antioxidant capacity. Therefore, the fine-tuning of reactive oxygen species (ROS) generation is crucial for preserving cell’s homeostasis. Mitochondria are a major source and an immediate target of ROS. Under different stimuli, including oxidative stress and impaired quality control, mitochondrial constituents (e.g., mitochondrial DNA, mtDNA) are displaced toward intra- or extracellular compartments. However, the mechanisms responsible for mtDNA unloading remain largely unclear. While shuttling freely within the cell, mtDNA can be delivered into the extracellular compartment via either extrusion of entire nucleoids or the generation and release of extracellular vesicles. Once discarded, mtDNA may act as a damage-associated molecular pattern (DAMP) and trigger an innate immune inflammatory response by binding to danger-signal receptors. Neuroinflammation is associated with a large array of neurological disorders for which mitochondrial DAMPs could represent a common thread supporting disease progression. The exploration of non-canonical pathways involved in mitochondrial quality control and neurodegeneration may unveil novel targets for the development of therapeutic agents. Here, we discuss these processes in the setting of two common neurodegenerative diseases (Alzheimer’s and Parkinson’s disease) and Down syndrome, the most frequent progeroid syndrome.
Mechanisms and regulation of human mitochondrial transcription
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.A unique feature of mitochondrial DNA function is the coupling of initiation of transcription with that of replication. Tan et al. discuss the choice between initiation of either process, and how mitochondrial DNA packaging into nucleoids controls its accessibility and function in human cells.
Human RCC1L is involved in the maintenance of mitochondrial nucleoids and mtDNA
Mitochondrial DNA (mtDNA) is organized with proteins into mitochondrial nucleoid (mt-nucleoid). The mt-nucleoid is a unit for the maintenance and function of mtDNA. The regulator of chromosome condensation 1-like protein (RCC1L) performs various functions in mitochondria, including translation, but its involvement in regulating mt-nucleoid maintenance is unknown. Herein, we found that human RCC1L was required to maintain mt-nucleoids and mtDNA. Human RCC1L has three splicing isoforms: RCC1L V1 , RCC1L V2 , and RCC1L V3 . Knockout (KO) cells lacking all RCC1L isoforms, which were lethal without pyruvate and uridine, exhibited a decrease in mt-nucleoids and mtDNA, along with swollen and fragmented mitochondria. Among the three RCC1L isoforms, only RCC1L V1 recovered all phenotypes observed in RCC1L KO cells. As the treatment of wild-type cells with chloramphenicol, a mitochondrial translation inhibitor, did not lead to the decrease in mt-nucleoids accompanied by mtDNA depletion, the decrease in mt-nucleoids and mtDNA in RCC1L KO cells was not solely attributed to impaired mitochondrial translation. Using conditional RCC1L KO cells, we observed a rapid decrease in mt-nucleoids and mtDNA during a specific period following RCC1L loss. Our findings indicate that RCC1L regulates the maintenance of mt-nucleoids and mtDNA besides its role in mitochondrial translational regulation.